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Abstract

We provide a mathematical analysis of the effective viscosity of suspensions of spher-
ical particles in a Stokes flow, at low solid volume fraction ¢. Our objective is to go
beyond the Einstein’s approximation pesr = (1 + %qﬁ)u. Assuming a lower bound on the
minimal distance between the N particles, we are able to identify the O(¢?) correction to
the effective viscosity, which involves pairwise particle interactions. Applying the method-
ology developped over the last years on Coulomb gases, we are able to tackle the limit
N — +o00 of the O(¢?)-correction, and provide explicit formula for this limit when the
particles centers can be described by either periodic or stationary ergodic point processes.

1 Setting of the problem

Our general concern is the computation of the effective viscosity generated by a suspension
of N particles in a fluid flow. We consider spherical particles of small radius a, centered at
x; N, with N > 1 and 1 < ¢ < N. To lighten notations, we write z; instead of x; n, and
B; = B(z;,a). We assume that the Reynolds number of the fluid flow is small, so that the
fluid velocity is governed by the Stokes equation. Moreover, the particles are assumed to be
force- and torque-free. If F = R3\ (U;B;) is the fluid domain, governing equations are

—uAu+Vp=0, z€F,
divu =0, ze€F, (1.1)
ulp, = ui +w; X (x — ),

where g is the kinematic viscosity, while the constant vectors w; and w; are Lagrange multi-
pliers associated to the constraints

/ ou(u,p)n =0, / ou(u,p)n x (x —x;) =0. (1.2)
0B; 0B,

Here, o, (u,p) := 2uD(u) — pI is the usual Cauchy stress tensor. The boundary condition at
infinity will be specified later on.

We are interested in a situation where the number of particles is large, N > 1. We want to
understand the additional viscosity created by the particles. Ideally, our goal is to replace
the viscosity coefficient p in (1.1) by an effective viscosity tensor y' that would encode the
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average effect induced by the particles. Note that such replacement can only make sense in
the flow region O in which the particles are distributed in a dense way. For instance, a finite
number of isolated particles will not contribute to the effective viscosity, and should not be
taken into account in . The selection of the flow region is formalized through the following
hypothesis on the empirical measure:

N
1
oy = — 0y, — f(x)dx weakly,
NTN ; T Netoo f@) Y (H1)
support(f) = O, O smooth, bounded and open, f|lo € C*(O).
Note that we do not ask for regularity of the limit density f over R3, but only in restriction
to O. Hence, our assumption covers the important case f = |—(19‘1(9.

We investigate the classical regime of dilute suspensions, in which the solid volume fraction
4 3
¢ = §N7Ta /10| (1.3)

is small, but independent of N. Besides (H1), we make the separation hypothesis

1/3

min |z; — x| > c¢N~/? for some constant ¢ > 0 independent of V. (H2)

i#]

Let us stress that (H2) is compatible with (H1) only if the L norm of f is small enough
(roughly less than 1/c¢), which in turn forces O to be large enough.

Our hope is to replace a model of type (1.1) by a model of the form

—pAu+Vp=0, divu=0, zeR*\O, (1.4)
—2div (W' D()) + Vp' =0, dive' =0, z€O, '
with the usual continuity conditions on the velocity and the stress:
u=1u"at 00, ou(u,p)n=ou W, pn at 90O. (1.5)

A priori, ' could be inhomogeneous (and should be if the density f seen above is itself non-
constant over @). It could also be anisotropic, if the cloud of particles favours some direction.
With this in mind, it is natural to look for ' = p/(z) as a general 4-tensor, with ¢’ = 2/ D(u)
given in coordinates by o0;; = u;jle(u)kl. By standard classical considerations of mechanics,
i’ should satisfy the relations

ngkz = M;ikl = M;'ilk = M?kﬁ,
namely p/ should define a symmetric isomorphism over the space of 3 X 3 symmetric matrices.

As we consider a situation in which ¢ is small, we may expect y/ to be a small perturbation
of p, and hopefully admit an expansion in powers of ¢:

= pld + Gy + ¢*pg + -+ + ¢ g + ("), (1.6)
The main mathematical questions are:

e Can solutions uy of (1.1)-(1.2) be approximated by solutions ucss = Igs\ou + lou’ of
(1.4)-(1.5), for an appropriate choice of p/ and an appropriate topology ?

e If so, does p/ admit an expansion of type (1.6), for some k ?



e If so, what are the values of the viscosity coefficients p;, 1 <i¢ <k ?

Let us stress that, in most articles about the effective viscosity of suspensions, it is implicitly
assumed that the first two questions have a positive answer, at least for K = 1 or 2. In
other words, the existence of an effective model is taken for granted, and the point is then to
answer the third question, or at least to determine the mean values v; := ﬁ Jo wi(x)dz of
the viscosity coefficients. As we will see in Section 2, these mean values can be determined
from the asymptotic behaviour of some integral quantities Zy as N — +o0o0. These integrals
involve the solutions uy of (1.1)-(1.2) with condition at infinity

lim wu(x)—Sx=0 (1.7)

|z| =400
where S is an arbitrary symmetric trace-free matrix.

The effective viscosity problem for dilute suspensions of spherical particles has a long history,
mostly focused on the first order correction created by the suspension, that is £ = 1 in
(1.6). The pioneering work on this problem was due to Einstein [15], not mentioning earlier
contributions on the similar conductivity problem by Maxwell [28], Clausius [11], Mossotti
[31]. The celebrated Einstein’s formula,

po=pt g¢u+0(¢)- (1.8)

was derived under the assumption that the particles are homogeneously and isotropically
distributed, and neglecting the interactions between particles. In other words, the correction
w1 = %,u is obtained by summing N times the contribution of one spherical particle to the
effective stress. The calculation of Einstein will be seen in Section 2. It was later extended
to the case of an inhomogeneous suspension by Almog and Brenner [1, page 16], who found

i = 2101 (). (1.9)

The mathematical justification of formula (1.8) came much later. As far as we know, the
first step in this direction was due to Sanchez-Palencia [36] and Levy and Sanchez-Palencia
[27], who recovered Einstein’s formula from homogenization techniques, when the suspension
is periodically distributed in a bounded domain. Another justification, based on variational
principles, is due to Haines and Mazzucato [19]. They also consider a periodic array of
spherical particles in a bounded domain €2, and define the viscosity coefficient of the suspension
in terms of the energy dissipation rate:

I 2
= — D
i = g5 [t

where uy is the solution of (1.1)-(1.2)-(1.7), replacing R? by Q. Their main result is that

5
px =t Sou+ 0(6%2).

For preliminary results in the same spirit, see Keller-Rubenfeld [26]. Eventually, a recent
work [20] by the second author and Di Wu shows the validity of Einstein’s formula under
general assumptions of type (H1)-(H2). See also [32] for a similar recent result.

Our goal in the present paper is to go beyond this famous formula, and to study the second
order correction to the effective viscosity, that is £ = 2 in (1.6). Results on this problem have
split so far into two settings: periodic distributions, and random distributions of spheres.



Many different formula have emerged in the literature, after analytical, numerical and experi-
mental studies. In the periodic case, one can refer to the works [40, 33|, or to the more recent
work [2], dedicated to the case of spherical inclusions of another Stokes fluid with viscosity
it # . The authors consider there an array of spheres centered at the points of a periodic
cubic lattice. By using their analysis in the limit i — 400 corresponding to rigid particles,
one can derive ! the formula

W :u+g¢>u+g¢2u+0(¢8/3)- (1.10)

In the random case, the most reknowned analysis is due to Batchelor and Green [5], who
consider a homogeneous and stationary distribution of spheres, and express the correction
1o as an ensemble average that involves the N-point correlation function of the process. As
pointed out by Batchelor and Green, the natural idea when investigating the effective viscosity
up to O(¢?) is to replace the N-point correlation function by the 2-point correlation function,
but this leads to a divergent integral. To overcome this difficulty, Batchelor and Green
develop what they call a renormalization technique, that was developed earlier by Batchelor
to determine the sedimentation speed of a dilute suspension. After further analysis of the
expression of the two-point correlation function of spheres in a Stokes flow [6], completed by
numerical computations, they claim that under a pure shearing motion, the particles induce
a viscosity of the form

po=p+ g¢u+7-6¢2u+0(¢2) (1.11)

Although the result of Batchelor and Green is generally accepted by the fluid mechanics
community, the lack of clarity about their renormalization technique has led to debates, see
[21, 34, 1].

One main objective in the present paper is to give a rigorous and global mathematical frame-
work for the computation of v, leading to explicit formula in periodic and stationary random
settings. We will adopt the point of view of the studies mentioned before: we will assume
the validity of an effective model of type (1.4)-(1.5)-(1.6) with £ = 2, and will identify the
possible averaged coefficient vs.

More precisely, our analysis divides into two parts. The first part, carried in Section 2, has
as its main consequence the following

Theorem 1.1. Let (x;)1<i<n a family of points supported in a fived compact of R, and
satisfying (H1)-(H2). For any trace-free symmetric matriz S and any ¢ > 0, let un, resp.
Uefy, the solution of (1.1)-(1.2)-(1.7) with the radius a of the balls defined through (1.3), resp.
the solution of (1.4)-(1.5)-(1.7) where p’ obeys (1.6) with k = 2, py being given in (1.9).
Ifun —ucrr = o(¢?) in Hl;fo(R?’), meaning that for all bounded open set U, there exists s € R
such that

limsup ||uy — ueffHHs(U) = 0((;52), as ¢ — 0,
N—+o0

then, necessarily, v2S - S = limy_ 4. VN where

o] [ 1
Vy = _— P —x) — _ dud ‘
N er M\ V2 ;93@ z) /u@st gs(x —y)f (@) f (y)dwdy (1.12)

with the Calderén-Zygmund kernel

gs :=—D (S(xw”) . S. (1.13)

'as explained to us by Habib Ammari




Roughly, this theorem states that if there is an effective model at order ¢?, the mean quadratic
correction vy is given by the limit of Vi, defined in (1.12). Note that the integral at the right-
hand side of (1.12) is well-defined: f € L?(R) and f — gs % f is a Calderén-Zygmund
operator, therefore continuous on L?(R3). We insist that our result is an if theorem: the
limit of (1.12) does not necessarily exist for any configuration of particles x; = x; v satisfying
(H1)-(H2). In particular, it is not clear that an effective model at order ¢? is available for all
such configurations.

Still, the second part of our analysis shows that for points associated to stationary random
processes (including periodic patterns or Poisson hard core processes), the limit of the func-
tional does exist, and is given by an explicit formula. We shall leave for later investigation
the problem of approximating uy by ucsy when the limit of Vy exists.

Our study of functional (1.12) is detailed in Sections 3 to 5. It borrows a lot from the
mathematical analysis of Coulomb gases, as developped over the last years by Sylvia Serfaty
and her coauthors [38, 35, 9]. Although our paper is self-contained, we find useful to give
a brief account of this analysis here. As explained in the lecture notes [39], one of its main
goals is to understand what configurations of points minimize Coulomb energies of the form

N

Hy = % Zg(wi —zj) + % ZV(:&)
i#] i=1

where g(z) = ‘—il is a repulsive potential of Coulomb type, and V is typically a confining

potential. It is well-known, see [39, chapter 2|, that under suitable assumptions on V, the

sequence of functionals Hy (seen as a functionals over probability measures by extension by

+0o outside the set of empirical measures) I'-converges to the functional

AN = [ gla=nir@du) + [ Viaaa)

Hence, the empirical measure dy = % Zfi 1 0z, associated to the minimizer (z1,...,2xN) of
Hpy converges weakly to the minimizer A of H.

In the series of works [38, 35], see also [37] on the Ginzburg-Landau model, Serfaty and her
coauthors investigate the next order term in the asymptotic expansion of ming, . ., Hy. A
keypoint in these works is understanding the behaviour of (the minimum of)

M= [ glo= )@y - Ny - V) (1.14)
R3 xR3\Diag

as N — +o0o. This is done through the notion of renormalized energy. Roughly, the starting
point behind this notion is the (abusive) formal identity

[ e = 9y = N@dEy - N = 5 [ Tha (1.15)
R3xR3 T JRr3

where hy is the solution of Ahy = 47 (dy — A) in R3. Of course, this identity does not make
sense, as both sides are infinite. On one hand, the left-hand side is not well-defined: the
potential g is singular at the diagonal, so that the integral with respect to the product of the
empirical measures diverges. On the other hand, the right-hand side is not better defined: as
the empirical measure does not belong to H—(R?), hy is not in H'(R?).

Still, as explained in [39, chapter 3], one can modify this identity, and show a formula of the
form

1
— 1 VAT |12 —
Hy = 71};1101 (47r /RS [Vhyl Ng(n)) (1.16)

5



where 1}, is an approximation of hy obtained by regularization of the Dirac masses at the
right-hand side of the Laplace equation: AR = 4m(6% — A) in R3. Note the removal of
the term Ng(n) at the right-hand side of (1.16). This term, which goes to infinity as the
parameter n — 0, corresponds to the self-interaction of the Dirac masses: it must be removed,
consistently with the fact that the integral defining H excludes the diagonal. This explains
the term renormalized energy. See [39, chapter 3| for more details.

From there (omitting to discuss the delicate commutation of the limits in N and 7 !), the
asymptotics of ming, .y Hn can be deduced from the one of ming, . ., ng |Vh77N\2, for
fixed 1. The next step is to show that such minimum can be expressed as spatial averages
of (minimal) microscopic energies, expressed in terms of solutions of the so-called jellium
problems: see [39, chapter 4]. These problems, obtained through rescaling and blow-up of the
equation on A7, are an analogue of cell problems in homogenization. More will be said in
Section 4, and we refer to the lecture notes [39] for all necessary complements.

Thus, the main idea in the second part of our paper is to take advantage of the analogy
between the functionals Vy and Hy to apply the strategy just described. Doing so, we face
specific difficulties: our distribution of points is not minimizing an energy, the potential gg
is much more singular than g, the reformulation of the functional in terms of an energy is
less obvious, etc. Still, we are able to reproduce the same kind of scheme. We introduce in
Section 3 an analogue of the renormalized energy. The analogue of the jellium problem is
discussed in Section 4. Finally, in Section 5, we are able to tackle the convergence of Vi, and
give explicit formula for the limit in two cases: the case of a (properly rescaled) LZ3-periodic
pattern of M-spherical particles with centers aq, ..., aps, and the case of a (properly rescaled)
hardcore stationary random process with locally integrable two points correlation function
p2(y,z) = p(y — z). In the first case, we show that

253
li =
N—1>I—Ii-1<>o VN 2M2

(Z SV Gsy(ai—aj) + KSV - (Gsp — Gg)(())), (1.17)
i#j

where G g and Gg 1, are the whole space and LZ3-periodic kernels defined respectively in (3.9)

and (5.16). See Proposition 5.4. In the special case of an array of particles, when M = L =1,

we can push further the calculation, and find the value vy = %,u, cf. Proposition 5.5. Note

that our result is in agreement with (1.10). In the random stationary case, if the process has

mean intensity one, we show that

25 1

2 L—+oo LS

. - . /
limVy = lm 25 > SV -Csu(z-7)
2#£2' €ANK ], (118)
2 1
_ 2 li / SV - Gsr(z—2")p(z — 2')dzdz'.
KLXKL

These formula open the road to numerical computations of the viscosity coefficients of specific
processes, and should in particular allow to check the formula found in the literature [5, 34].

Let us conclude this introduction by pointing out that our analysis falls into the general
scope of deriving macroscopic properties of dilute suspensions. In this perspective, it can
be related to mathematical studies on the drag or sedimentation speed of suspensions, see
[24, 13, 22, 23, 29] among many. See also the recent work [14] on the conductivity problem.

2 Expansion of the effective viscosity

The aim of this section is to understand the origin of the functional Vy introduced in (1.12),
and to prove Theorem 1.1. The outline is the following. We first consider the effective model



(1.4)-(1.5)-(1.6). Given S a symmetric trace-free matrix, and a solution u.s¢ with condition
at infinity (1.7), we exhibit an integral quantity Z.;s = Zcs¢(S) that involves ey and allows
to recover (partially) the mean viscosity coefficient v5. In the next paragraph, we introduce
the analogue Zn of Z.ss, that involves this time the solution uy of (1.1)-(1.2) and (1.7). In
brief, we show that if uy is 0(¢?) close to uesf, then Zy is o(¢?) close to Z.ss. Finally, we
provide an expansion of Zy, allowing to express vo in terms of Vy. Theorem 1.1 follows.

2.1 Recovering the viscosity coefficients in the effective model

Let k > 2, u/ satisfying (1.6), with viscosity coefficients p; that may depend on z. Let S
symmetric and trace-free. Let uesy = lgs\ou + lou’ the weak solution in H'(R?) of (1.4)-
(1.5)-(1.7). We note ug(x) = Sz. By a standard energy estimate, one can show the expansion

Ueff =Uo + GUepra + -+ + Fucrpp +0(¢*) in H'(R?)

where the system satisfied by uess; = 1rs\oui + low] is derived by plugging the expansion
in (1.4)-(1.5) and keeping terms with power ¢ only. We notably find

—pAu; +Vp =0, divu; =0, zeR3\O, (2.1)
—pAul + Vp) = 2div (u D(up)) divu) =0, =€ O, '
together with the conditions: u; = 0 at infinity,
up =u) at 00, ou(ur,p1)n = o, (ul,pi)n + 2u1D(ug)nat HO.
Similarly,
—pAus +Vpy =0, divug =0, z€R3 \ O, (2.2)
—pAub + Vph = 2div (2 D(ug)) + 2div (u1 D(u})), divuy =0, =z € O, '
together with: us = 0 at infinity,
ug =ub at 00, o,(uz,p2)n = o,(uy,ph)n + 2uaD(ug)n + 2u1 D(u)n at dO.
We now define, inspired by formula (4.11.16) in [4],
Tepf = / ou(u — ug, peff)n - Sxds — 2,u/ (u—ug) - Snds (2.3)
00 00
where n refers to the outward normal. We will show that
Tesr = 2|0 (1S : S+ ¢*155 1 S) +2¢2/O,u1D(u/1) S+ o(¢?). (2.4)

We first use (1.5) to write
Teps = / o (U —ug,p)n - Szds +/ o —pu(ug, 0)n - Sxds — ZM/ (v —ug) - Snds

00 00 00

= / o (puy + *uly, dp1 + ¢*pa)n - Sads + 2/ (b1 + ¢ o) Sn - Szds
00 00

- 2,u/ (pufy + d*uhy) - Snds + o(¢?)

00

= / ou(pu) + @i, dp1 + ¢*pa)n - Sads + d)/ o (puy,0)n - Szds

00 00

+ 2/ (pp1 + ¢°p2)Sn - Swds — 2#/ (u) + ¢*us) - Snds + o(¢?)
00 00



Using the equations satisfied by v} and u), after integration by parts, we get
/ ou(¢uy + ¢2U/27 ¢op1 + ¢2p2)n - Sxds
00

=— / 2div (1S + ¢ paS) - Swdr — /
@

2div (¢*uy D(u})) - Szdx + 2u/ D(¢uy + ¢?ub) : Sdx
@ @

=2|0|(¢p11S : S + ¢*1,S : S) — 2/ (b1 + ¢*u2)Sn - Sxds
00
+2/ $*uD(uy) : S — 2/ @1 D(uh)n - Sads + 2;1/ (puf + d*uhy) - Sndz.
o 00 o

Plugging this last line in the expression for Z.s yields (2.4).

We see through formula (2.4) that the expansion of Z.ss in powers of ¢ gives access to vy,
and, if p; is known, it further gives access to vo. On the basis of the works [1, 32], we know
that p is given by (1.9), which implies v; = %u. With such expression of 1, and the form
of f specified in (H1), we can check that ug = (5|O|) " tuess1 satisfies

— Aug + Vp =div(Sf) = SVf, divug=0 in R’ (2.5)

It follows that

Z.jy = 50nlOlISP + 26%0pnS : 8 = 50u?10F [ ID(us) +o(?).  (26)
R

2.2 Recovering the viscosity coefficients in the model with particles

To determine the possible value of the mean viscosity coefficient vo, we must now relate the
functional Z. s, based on the effective model, to a functional Zy based on the real model with
spherical rigid particles. From now on, we place ourselves under the assumptions of Theorem
1.1. Note that, thanks to hypothesis (H2), the spherical particles do not overlap for ¢ small
enough, so that a weak solution uy € H'(R?) of (1.1)-(1.2)-(1.7) exists and is unique.

By Stokes formula, for any R such that O € Bg, we have
Teps = / u(Ueff — g, Pepf)n - Sxds — 2;1/ (Uepf — uo) - Snds (2.7)
O0BR OBRr

By analogy with (2.3), and as all particles remain in a fixed compact K D O independent of
N, we set for any R such that K C Bp:

IN = / ou(un —uo,pN)n - Sxds — 2,u/ (uny — ug) - Snds (2.8)
0BRr OBR
which again does not depend on our choice of R by Stokes formula. Now, if ucf; and uy are
o(¢?)-close in the sense of Theorem 1.1, then

limsup |Zy — Zess| = o(¢?). (2.9)
N—+o0
Indeed, uny — ufy is a solution of a homogenenous Stokes equation outside K. By elliptic
regularity, we find that limsupy_, , o, llters — un||gs(xry = 0, for any compact K’ C R? \ K
and any positive s. Relation (2.9) follows.

We now turn to the most difficult part of this section, that is expanding Zn in powers of ¢.
We aim at proving



Proposition 2.1. Let (z;)1<i<n, satisfying (H1)-(H2). For S trace-free and symmetric, for
¢ >0, let un the solution of (1.1)-(1.2)-(1.7) with the ball radius a defined through (1.3). Let
In as in (2.8), Vn as in (1.12), and ug the solution of (2.5). One has

Iy =56p|O||SI* + 20%|OPVy — 50u6%|OJ? /R D(ug) + o(¢?) (2.10)

As before, notation Ay = By +0(¢?) means limsup |Ay—By| = o(#?). Obviously, Theorem
1.1 follows directly from (2.6), (2.9) and from the proposition.

To start the proof, we set vy := uny — ug. Note that vy still satisfies the Stokes equation
outside the ball, with vy = 0 at infinity, and vy = —Sx 4+ u; + w; X (¥ — x;) inside B;.
Moreover, taking into account the identities:

/ ou(uo, 0)nds =2u Sn = 2u/ divS =0
8Bi 8Bi B

2

and

/ ou(uo, 0)n x (v — x;) ds = 2 Sn x (r —x;)ds = QM/ S(z —x;) X nds
0B;

OB; 0B;

(2.11)
= 2,u/ curl (S(z —x;)) ds =0,
B;
one has for all i:
/ ou(vn,pN)nds =0, / ou(vn,pNn)n X (x —x;) ds = 0.
OB; 0B;
From the definition (2.8), we can re-express Zy as
N N
In = Z/ cr“(vN,pN)n-Sa:ds—ZuZ/ vy - Snds (2.12)
=1 JoB; i=170Bi

To obtain an expansion of I in powers of ¢, we will now approximate (vy,py) by some
explicit field (vepp, Papp), inspired by the method of reflections. This approximation involves
the elementary problem:

—pAv +Vp=0 outside B(0,a),
divo =0 outside B(0,a), (2.13)
v(x) = =Sz, =z € B(0,a).

The solution of (2.13) is explicit [18], and given by

vi[S] = —gS (z® x)ifg — Sa:;’i) + g(S Fx® x)fiﬁ = v[S] 4+ O(a®|z|™%) (2.14)
with 5
o[s] =28 (x®x)% (2.15)
The pressure is
PpS] = —5pad (;? z) (2.16)



We now introduce

(Vapp, Papp) (x) = Z(US[S],pS[SD(x —zi) + Y ([ p°[Si]) (= — ), (2.17)

where

= > D[S (z; — z;). (2.18)

J#i

In short, the first sum at the right-hand side of (2.17) corresponds to a superposition of N
elementary solutions, meaning that the interaction between the balls is neglected. This sum
satisfies the Stokes equation outside the ball, but creates an error at each ball B;, whose
leading term is S;x. This explains the correction by the second sum at the right-hand side of
(2.17). One could of course reiterate the process: as the distance between particles is large
compared to their radius, we expect the interactions to be smaller and smaller. This is the
principle of the method of reflections that is investigated in [23]. From there, Proposition 2.1
will follow from two facts. Defining

N N
Lopp = E 01 (Vapp, Papp)n - ST ds — 2 g Vapp - S ds
0B; 9B,
i=1 i i=1 i

we will show first that

T = 56001 + 2620V = 50u10F | | |D(us)] (219)
and then
limsup |Zy — Zupp| = 0($?) (2.20)
N—+o0

The proof of (2.19) follows from a calculation that we now detail. We define

Zi(v,p) :== /83‘ ((o(v,p)n ® x) — 2u(v @ n)) ds

We have
Tapp = Y L0 [S)(- — ), p[S)(- —22)) : S + D D L(w*[S)(- — 2y), p°[S)(- — ;) : S
i i jF#
) L[S = i), IS — i) S+ DY T[S — 25), p[S5](- — ) S
i 1§

=l + Iy + 1.+ 1.

To treat I, and I;, we rely on the following property, that is checked easily through Stokes
formula: for any (v,p) solution of Stokes in B;, and any trace-free symmetric matriz S,
Zi(v,p) : S =0. As for all ¢ and all j # 7, v*[S](- — z;) or v*[S;](- — ;) is a solution of Stokes
inside B;, we deduce

Iy=1;=0. (2.21)

As regards I,, we use the following formula which follows from a tedious calculation [18]: for
any traceless matrix S,

Z;(v3[S)(- — x1)) = - pa®S. (2.22)

10



It follows that 20
Ia—NTM a®|S|* = 5¢|0|ulS|? (2.23)

This term corresponds to the famous Einstein formula for the mean effective viscosity. It is
coherent with the expression (1.9) for p1, which implies vy = % L.

Eventually, as regards I., we can use again (2.22), replacing S by S;:

20—”#@325 g2 Ma?’ZZD zj): S

i jF#
_ 150 1
BIOL 2 L 37 S st — )
1 jF#i
2 5 75|02
=20°[OWn +¢"———p | gs(@—y)f(@)f(y)dedy, (2.24)
T R3 xR3

with gg defined in (1.13). In view of (2.21)-(2.23)-(2.24), to conclude that (2.19) holds, it is
enough to prove

Lemma 2.2. For any f € L*(R3),
167
L. aste =) fodady === [ 1DGus)P (225)
R3xR3

with gs defined in (1.13), and ug € H*(R3) the solution of (2.5).

Proof. Note that both sides of the identity are continuous over L?: the left-hand side is
continuous as the Calderén-Zygmund operator f — gg % f is continuous over L?, while the
right-hand side is continuous by classical elliptic estimates for the Stokes operator. By density,
this is therefore enough to assume that f € C°(R3). We denote by U = (U;;),Q = (Q;)
the fondamental solution of the Stokes operator. This means that for all j, the vector field
Uj = (Uij)i<i<n and the scalar field Q); satisfy the Stokes equation

— AU; +VQ; = dej, divU; =0 inR® (2.26)

It is well-known, see [16, page 239], that

1 1 TQx 1 =z

From there, one can deduce the following formula, ¢f [16, page 290, equation (IV.8.14)]:

3 (z®@x)z;
A |zf5

Using the Einstein convention for summation, this implies in turn that

45(2) = — S, <S(ﬁ’;w>"’”> = 1S - S0 (U, Q)
= %WS : DS02, Uy = (SV) - (S0, Ur) (2.27)
where we have used that S is trace-free to obtain the third equality. Hence,
[ [ aste=ns@izsway =5 [ (5 DSu0, 00« 1) =)0y
= / St DS (Ui )y — 2) f(y)dy.  (2.28)

11



Note that the permutations between the derivatives and the convolution product do not raise
any difficulty, as f € C°(R?). Now, using Sy = Sy, and denoting by St™! the convolution
with the fundamental solution (inverse of the Stokes operator), we get

Sk10z, /Ul(y —2)f(z)dz = St (SVf)(y). (2.29)
Eventually,
[ [ oste - ws@)swisdy = [ 5985V Aw) f)d
== [$UsYNW) - (5VNWdy =5 [ IDws)P

This concludes the proof of the lemma.

Remark 2.3. By polarization of the previous identity, at least for f, f smooth and decaying
enough, one has

[ [sste - nswiads = -5 [V (5P do
8T

3

] (2.30)
(SV) - (Stfl(SVf))(x) f(z)dx

The last step in proving Proposition 2.1, hence Theorem 1.1, is to show the bound (2.20). If
W = UN — Vapp, 9 ‘= PN — Papp>

N N
IN —Lopp = Z/aB.a#(w,q)n-Sxds—2uZ/aB. w - Snds
i=179Bi i=1/OBi

Direct verifications show that v,y,,, hence w, satisfies the same force- and torque-free condi-
tions as v. This means that for any family of constant vectors u; and w;, 1 <7 < N,

N N
IN — ZLopp = Z/&B- ou(w,gn - (ST —u; —w; X (x — ;) ds — ZMZ/E)B- w-Snds
i=1 "/ obi i=1/9Bi

By a proper choice of u; and w;, we find

N N
IN —Zopp = —Z/{«)B'au(w,q)n~des—2uZ/aB. w-Snds
i=1 @ =1 v

N
= —/FQMD(W) : D(UN)dac—Q,u;/Bi D(w) : Sdx

N N
:—Z/ UH(UN,pN)n-wds—ZuZ/ D(w): Sdx
i=170Bi i=1 7 Bi

N N
= Z/ ou(vn, pN)n - (w + Uy + @; X (xxi))dSQMZ/ D(w) : Sdx
i=1 /OB i=1 7 Bi
(2.31)

for any family (u;,@;), using this time that vy is force- and torque-free. Let ¢ > 2. By a
proper choice of (4;,&;), by Poincaré and Korn inequalities, one can ensure that for all 4,

0+ 2+ % (@ =2l ey < CID@) s,
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where

. 1
ngwlfé,q(aBi) = inf {EHGHL‘Z(BZ-) + IVGllr(B,), Glo, = g}

Note that the factor % at the right-hand side is consistent with scaling considerations. More-
over, by standard use of the Bogovskii operator, see [16], there exists a constant C' (depending
only on the constant c in (H2)) and a field W € W14(F) | zero outside UY._, B(z;, 2a) satisfying

divW =0 inF, Wlp = (w+i+& x (x—;))|B,,

||D(W)H%q(]:) < ZZ: |lw+a; + @ x (z — xi)”?}vl_%,q(&).

We deduce, with p < 2 the conjugate exponent of ¢:

N
’;/@Bi ou(vn, pn)n - (w + U + @ X (a:—:zi))ds‘ = ’/}_D(UN) : D(W)‘

_ 1
< DNl o B 20 |IDV )| Loy < CMP 1/2||D(UN)||L2(R3)(Z ID(W) |74 5,) /.

By well-known variational properties of the Stokes solution, || D(vy)||;2 minimizes | D(v)|| 2
over the set of all v in H!(R?) satisfying a boundary condition of the form v|p, = —Sz +u; +
w; X (z — x;) for all i. By the same considerations as before, based on the Bogovski operator,

we infer that
N

ID(wn)172gsy < C Y ID(=52)|[72(5,) < C'¢

i=1

so that
al 1
»> /a (o o) (w T+ G x (o = ) ds] < COMP (3 ID(@) G0s,) "
i=1 ¢ i

Using this inequality with the first term in (2.31) and applying the Holder inequality to the
second term, we end up with

1
(Tn = Zapp| < COP (3 ID )%, 5,) (2:32)

To deduce (2.20), it is now enough to prove that for all ¢ > 1, there exists a constant C
independent of N or ¢ such that

S 1Dz, < C@'F +1) (2.33)

Indeed, taking ¢ > 2, meaning p < 2, and combining this inequality with (2.32) yields (2.20),
more precisely

2
TN — Tappl < C(6" 77 + ¢5).

In order to show the bound (2.33), we must write down the expression for w|p, = vn|B, —
Vapp| B;» Where vgp, was introduced in (2.17). A little calculation, using Taylor’s formula with
integral remainder, shows that

wlp,(z) = wj (z) — Di(x — x;) — Ei(x — x;) — Filz(x — x4, 0 — ;) (2.34)
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with w] a rigid vector field (that disappears when taking the symmetric gradient), with
Di=> D@[S;])(xi —z;), Ei:=Y D[S+ S;]—v[S+8])(z; — )
jF#i JF

and with the bilinear application:

F|x:—2/ (1 —t)VZ05[S + S;](t(x — z;) + z; — x;)dt.
J#i

We remind that v*[S] and v[S] were introduced in (2.14) and (2.15), while the matrices S; are
defined in (2.18). Note that the matrices D; and S; have the same kind of structure. More
precisely, we can define for a collection (A, ..., Ax) of N symmetric matrices, an application

A:(Ar,. . Ax) = (AL LAY, Ap=D " D([A))(a — ;).
J#i

Then, (S1,...,8v) = A(S,...,S) and (Dy,...,Dy) = A(S1,...,Sn) = A%(S,...,S). Note
that for any matrix A, the kernel D(v[A]), homogenenous of degree —3, is of Calderdn-
Zygmund type. Using this property, we are able to prove in the appendix the following
lemma, which is an adaptation of a result by the second author and Di Wu [20]:

Lemma 2.4. For all 1 < q < +00, there exists a constant C, depending on q and on the
constant ¢ in (H2), such that, if (A},..., Ay) = A(A1, ..., AN), then

N L
DA< Cor Y A
i=1 i=1

We can now proceed to the proof of (2.33). Denoting w; := D;(x —z;), we find by the lemma:

N N
S IPDlfags < Ca SID < C'alo J IS < Ol 3 IS < o'
=1 i=1

Then, we notice that for any matrix A, |D(vS[A] — v[A])(z)| = O(a®|z|~5). This implies that

w? := E;(x — x;) satisfies

1951 + 15
S IDDlmy < Ca° KB < a3 (5022

i jFi

By assumption (H2), the points y; :== N'/3z; satisfy for all i # j:

1
lyi —y;| > (C+|yz yil) > c.

In particular,
S|+ 151
D < C’a3d>5Q/3 | q
210 2 =)

We then make use of the following easy generalization of Young’s convolution inequality:

Vg1, > (O laiibi)? < max (sup Y lais|,sup ¥ fag)* Y [bif?. (2.35)
i g by I

i
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Applied with a;; = s and b; = |S| + |5}, together with Lemma 2.4, it yields

1
(ct+lyi—y;1)

Z 1D(w ) < CaP@PB (N [S]7+ |8517) < CaPgPUP (1 + ¢F )N < Cott

J

It remains to bound the symmetric gradient of w} := Fy|,(x — z;, 7 — 2;). By the expression
of v*¥, we get

(15 a4
D) < C ( " ‘J<wuw%w

- |z — 25> o —
Proceeding as above, we find

Z 1D (w | < Ca¥ (@13 + 131+ ¢7)N < g1

As D(w) = D(w}) + D(w?) + D(w}), cf. (2.34), the previous estimates yield (2.33). This
concludes the proof of Proposition 2.1, and therefore the proof of Theorem 1.1.
3 The ¢? correction Vy as a renormalized energy

We start in this section the asymptotic analysis of the viscosity coefficient

Vv = 7?6(2’ <N2 ZQS /u@st gs(x — y)f(w)f(y)d:vdy)

As a preliminary step, we will show that there is no loss of generality in assuming
;€0 Vie{l,...,N} (3.1)
We introduce the set
INewt ={1 <i <N, z; ¢ O}, and Negt = Negt(N) = |IN eqt]-
By (H1), it is easily seen that Neg = o(N) as N — +o00. We now show

Lemma 3.1. Vy is uniformly bounded in N, and

750 |
VN ext := VN — i Lj) —
Next N 167 <(N— Negt)? ; gs(x; — xj) /]R3><R3

iaj¢IN,ewt

gs(@ =) (2)f(y)dady)

goes to zero as N — +o0.

Proof. For any open set U, we denote fU = ﬁ fU.

Let d := $N~1/3 < min; 2%l by (H2). We write

1 1
S > as(—a) =y 3 (95(%‘ ) f, st y)dy)

i#] i#]

b ][ s(w; —y)dy — ][ ][ gs(z — y)drﬂdy>
N2 Z ( xj,d) B(x;,d)J B(x;,d)

gs(x —y)dady =T+ 11+ 111.
N2 Z][ xl,d)][;(xj,d)

7]
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For the first term, with y; := N'/3z; and with (H2) in mind, that is |y; — yj| > c for i # j:

\gsm—wj)—][( o5t 0] < ][( sup [Vgs|(a: — 2)l|z; — yldy
xj,

B(zj,d) z€[x;,y]

d
(c+ lyi —yi)*
see (1.13). This yields, by a discrete convolution inequality:

CN'/3 1
dsup — < C'NYld<c
N

< CN4/3

1 <

where we have used that Z W is uniformly bounded in N and in the index i

thanks to the separation assumption. By similar arguments, |II| < C. As regards the last
term, we notice that

N
1
I < —— — ) F(2)Fr (y)dy— ) e (@) 50 d
11| < N2d6‘/RB><R3 9s(x—y)Fn(z)Fy (y)dy ;/RSXM 95(x =) 1 B(a,,a) ()1 B(a,,0) () dady|

where Fy = ZZ 1 1B(a;,4)- The operator T F(x = [ gs(z—y)F(y)dy is a Calderén-Zygmund
operator, and therefore continuous over L?. As F 2 — Fy (the balls are disjoint), we find that
the L? norm of Fy is (Nd®)%/? and

[, os(e =) Ew () Ew )| <IN < TV
X

Similarly,
N
D 9500 = 0 e @)t ] < NITE
; R3xR3

It follows that [I11| < N d3 With our choice of d, the first part of the lemma is proved.

From there, to prove that Vi c,t goes to zero, as Neye = o(N), it is enough to show that

1
L (Y asto )= X asai ) > 0.
i#j ],
ingéIN,ezt

By symmetry, it is enough that
1
ﬁng(xi —z;) — 0.
i#],
ieIN,ecct

This can be shown by a similar decomposition as the previous one. Namely,

: J
gs(xi — x; gs(x; — xj) — gs(xi — y)dy
o st ) = 3 (sstora - ftor-vh)

i#£j i#£]

7IGIN,e:ct

Y
+-— gsfm—ydy—][ ][ gs(r — y)dxdy

i#j

Ze[N,ezt

> ][ ][ 95(x — y)daedy = Lgt + Ilopt + I .

ie]N,ezt
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Proceeding as above, we find this time

N,

|Iewt’ + |IIea:t| + ‘IIIemt| SC ;;Ct -0 as N — +o0

which concludes the proof.

Remark 3.2. By Lemma 3.1, there is no restriction assuming (3.1) when studying the asymp-
totic behaviour of V. Therefore, we make from now on the assumption (3.1).

As explained in the introduction, the analysis of Vy will rely on the mathematical methods
introduced over the last years for Coulomb gases, the core problem being the analysis of a
functional of the form (1.14). We shall first reexpress Vy in a similar form. More precisely,
we will show

Proposition 3.3.

750
VN =Wn+o0(1), Wy := 9]

6 - gs(z—y)(don(z) — f(x)dz) (don(y) — fy)dy)
T JR3xR3\Diag

Remark 3.4. In the definition of Wy, the integrals of the form

j/ g5(x — y)don(x) f(y)dy, and j/ g5 — ) f (2)dzdoy (),
R3 xR3\ Diag R3 xR3\ Diag

that appear when expanding the product, are understood as

s

N
1
gs(z —y)don(x) f(y)dy — SV -St™ SV f(z),
Loy 5 ~ D@ )y = 0 3 (@)

N
8t 1
T — z)dxdd = —— SV - St_lSVf i),
@mmm%<ym> () 3N; ()

where St is the Stokes operator, see (2.30) and the proof below for an explanation.
Proof. Clearly,

VN = 715€|ifr)| R3 xR3\ Diag 9s(@ =) (déN(x)déN(y) a f(x)f(y)dmdy)

so that formally
75|0|

167 JR3xR3\ Diag
75|0|

167 JR3xR3\ Diag

VN = Wn +

gs(z —y)(don(x) — f(z)dz) f(y)dy

gs(r —y) f(z)dx(don(y) — f(y)dy).

Note that it is not obvious that this formal decomposition makes sense, because all three
quantities at the right-hand side involve integrals of gs(z — y) against product measures of
the form doy(x)f(y)dy (or the symmetric one), which may fail to converge because of the
singularity of gg. To solve this issue, a rigorous path consists in approximating, at fixed
N, each Dirac mass 6,, by a (compactly suppported) approximation of unity p,(z — x;),
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where 1 > 0 is the approximation parameter and goes to zero. One can then set, for each 7,
o (x) =+ ZZ 1 Pn(x — x;), leading to the rigorous decomposition

WO st DY) ~ fa)ia) o)
T JR3xR3\ Diag
75|0)

167 JR3xR3\ Diag

Vi =Wy +

gs(z —y) f(x)dz (0% (y)dy — f(y)dy)

where VI, W} are deduced from Vy, Wy replacing the empirical measure by its regulariza-
tion. It is easy to show that lim, o V}Z, = Vpn. To conclude the proof, we shall establish the
following: first,

. 87r -
lim gs(x — y)8 (x)dz f(y)dy ZSVSt 'SV f(),  (3.2)
n—0 JR3 xR3\ Diag
the same limit holding for the symmetric term. In partlcular, (3.2) will show that Wy =
lim,_,o W}, exists, in the sense given in Remark 3.4. Then, we will prove

lim B—WiZSVSt 59 1) = | gs(x — ) f(@)f()drdy. (3.3

N—+co 3 N R3xR3\ Diag
which together with (3.2) will complete the proof of the proposition.
The limit (3.2) follows from identity (2.30). Indeed, for n > 0, this formula yields
8T _
/ gs(a — )% @)dof )y =~ [ SEUSVI) (@) - SV ()
R3xR3\ Diag 3 Jr3

Now, we remark that due to our assumptions on f, by elliptic regularity, h = St~} (SV f)(z)
is C'! inside O. Moreover, in virtue of Remark (3.2), we can assume (3.1). Hence, as n — 0,

1
5T @) - SV (@) de — ——(SV&N, 8” ZSV h(zs).
3 Jus

It remains to prove (3.3). In the special case where f € C"(R3?) for some r € (0,1) (imply-
ing that it vanishes at 8(9) classical results on Calderén-Zygmund operators yield that the
function h(y) = [gs 9s(x —y) f(x)dx is a continuous (even Holder) bounded function, so (H1)
implies stralghtforwardly

/  gs(@ —y)f(@)dz(don(y) — fy)dy) = / h(y)(don(y) — f(y)dy) — 0.
(R3xR3)\Diag R3

In the general case where f is discontinuous across 90, the proof is a bit more involved. The
difficulty lies in the fact that some points z; get closer to the boundary as N — +oo0.

Let € > 0. Under assumption (H2), there exists ¢ > 0 (depending on ¢ only) such that
’{i, z; belongs to the ¢’ neighborhood of 8(’)}’ <eN. (3.4)

Let xe : R? — [0,1] be a smooth function such that x. = 1 in a /e/4 neighborhood of 9O,
Xe = 0 outside a ¢’£/2 neighborhood of 00. We write

[ asto— ) fa)datdin() - F5)dy)

(R3xR3)\Diag

= [ asle = (D@ () - Fw)d)
(R3xR3)\Diag

] gste = )= xe)(w)da(dBn () ~ Fw)dy).
(R3xR3)\Diag
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By formula (2.30), the second term reads

8w

/, 95z =y)(A=xef)(@)dz(don(y) = f(y)dy) = 5 | SV-ue(y) (don(y) - f(y)dy)
(R3xR3)\Diag R3

with u. = St™1SV((1 — x.)f). The source term (1 — x.)f being smooth and compactly
supported, SV - u. is smooth and bounded, so that, as N — 400, the integral goes to zero
by the weak convergence assumption (H1), for any given € > 0. As regards the first term, we
split it again into

[ st eh @detdi(y) - f5)dy)

(R3xR3)\Diag

— [ asle = Do) v () - f)dy)
(R3xR3)\Diag

[ gt = e @de(l - x:) ) dox(y) ~ Fw)dy)
(R3xR3)\Diag

_ Sg SV ve(y)xe(y) (Ao () — f(3)dy)
n %ﬂ |5V 0y (1= X)) (Ao () — f(y)dy)

where v, is this time the solution of the Stokes equation with source SV (xf). It is smooth
away from 0Q, so that the last term at the right-hand side goes again to zero as N — +o0,
by assumption (H1).

It remains to handle the first term at the right-hand side. We shall show below that for a
proper choice of x. one has

IVve||Le < C, C independent of ¢. (3.5)

Taking advantage of this fact, we write

8
T[SV vt @s (o) - S
8T 1.
< gHS * Ve[ Loo (r3) N i, xe(@i) = 1} + lIxefllpr | < Ce
where we used property (3.4) to obtain the last inequality. With this bound and the conver-

gence to zero of the other terms for fixed € and N — 400, the limit (3.3) follows.

We still have to show that Vo® is uniformly bounded in L*°. We borrow here to the analysis
of vortex patches in the Euler equation, initiated by Chemin in 2-d [10], extended by Gamblin
and Saint-Raymond in 3-d [17]. First, as O is smooth, one can find a set of smooth divergence-
free vector fields X1,..., X,, tangent at 0O and non-degenerate in the sense that

inf X; x X;| >0,
xlélR:,);‘ i il

see [17, Proposition 3.2]. We then split the Stokes system
—Ave + Vp: = SV(xef), divee=0

into the equations:
curlv, = €., dive. =0
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and

—AQ, = curl SV (x.f).

As xef belongs to L'(R3) N L®°(R3) and as for all 4, X; - V(x.f) belongs to C°(R3) C
C™1(R3) for all r € (0,1), we can use the results of [17], notably the estimates of page
401 (with w. replaced by x.f). We get that 9;0;A (x-f) € LY(R3) N L>®(R3), so that
Q. € LY(R?) N L®(R3). Actually, applying X; - V to the equation, by continuity of Riesz
transforms on spaces C®(R?), we further get that X;-VQ. € C"}(R3) for any 0 < r < 1. We
conclude by [17, Proposition 3.3] that Vu. € L>(R3). Moreover, one can always choose Y-
in the form x(t/e), for a coordinate t transverse to the boundary, meaning that 0; is normal
at 00. With such choice, || X; - Vxe|[re < C, so that || X; - V(xef)|ze < C, and all bounds
mentioned above are independent of €. This concludes the proof of Proposition 3.3.

3.1 Smoothing

By Proposition 3.3, we are left with understanding the asymptotic behaviour of

Wy = 21O g5z — ) (Ao (x) — f(2)de) (dn(y) — F)dy)  (3.6)

167 JR3xR3\ Diag

The following field will play a crucial role. For U, @ defined in (2.26), we set

Gs(z) = SgopUi(z), ps(z) = SkokQi(x). (3.7)
From (2.27), we have gg = 57 (SV) - Gg, and G solves in the sense of distributions

— AGg+ Vpg = SV6, divGg=0 in R®. (3.8)

Moreover, from the explicit expression

1 1 Xy 1 Iy
Uz(ﬂﬁ) = [y <€l + x‘3$> ) Ql(ﬂﬂ) = EW’

and taking into account the fact that S is symmetric and trace-free, we get

x 3 x 3 (Sz-x)
(Sl‘l‘)w, pS(l') - _47T ’$‘5

3
Gs(x) = ——Sumay (3.9)

S TS = g
Let us note that G is called a point stresslet in the literature, see [18]. It can be interpreted
as the velocity field created in a fluid of viscosity 1 by a point particle whose resistance to a
strain is given by —5.

We now come back to the analysis of (3.6). Formal replacement of the function f in Lemma
2.2 by 0y — f yields the formula

” _ _ _ _ 277
L. asta =) (dsx(a) = f(@)de) (dn(o) — F)dn) = =355 [ IDGwP" - (310)
where
N
hy(z) =Y Gz — ;) — NSt (SVf) = ZGS (x—zi)—N | Gs(z—y)f(y)dy (3.11)
i=1 R?
satisfies
— Ahy +Vgy =8V Y 6, — NSVf, divhy =0 in R (3.12)

i
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The formula (3.10) is similar to the formula (1.15), and is as much abusive, as both sides are
infinite. Still, by an appropriate regularization of the source term SV )", d,,, we shall be able
in the end to obtain a rigorous formula, convenient for the study of Wy. This regularization
process is the purpose of the present paragraph.

For any n > 0, we denote B, = B(0,7), and define G/, by:

Gl =Gg, pl = ps outside By, (3.13)
— AGg + Vpg =0, diVGg =0, Gglé?B,, = GS‘BBW in B, (3.14)
Note that by homogeneity,
1
Gi(x) = ?Gé(x/n)- (3.15)

The field G belongs to H*(R?), and solves
— AGL + Vpl = 5" (3.16)
where S is the measure on the sphere defined by
§":=— [2D(GL)n — phn] s" = — [0,GL — pln| s" (3.17)

with n = I%I the unit normal vector pointing outward By, [F] := F|8B# - F|8B; the jump at
0B, (with (‘3B,‘7|r , resp. OB,, the outer, resp. inner boundary of the ball), and s" the standard
surface measure on 9B5,. We claim the following

Lemma 3.5. For alln >0, S" =divU¥" in R3, where

2
U= 3;]5 (Sw Qr+z®Sr— 5’332|S + Zn25> —2D(GY)(x) + pk(z)Id, =z € By,
s

U .= 0 outside.

(3.18)

Moreover, W' — S§ in the sense of distributions as n — 0, so that ST — SV.

Proof of the lemma. From the explicit formula (3.9) for Gg and pg, we find

3 Sz@r+r®Sr  15(Sz-x)zx 3 Sz-x

2D(Gg) = — _
(Gs) =12 EE Ar x| At |af?

Id.

so that

3

(2D(GE)n — pén)|yps = 2D(Gs)n — psn)|ypt = P

(4(Sn -n)n — Sn) (3.19)

Using that S is trace-free, one can check from definition (3.18) that div ¥” = 0 in the com-
plement of 0B, while:

Ny —
[U'n] = - n|aB;
3 S S 55 D(G'} !
:7773<< n®@n)n+(n® n)n—z ")‘(2 (Gg)n+pgn)lyp-

= @2D(G)n — plin) oz — (2D(GL)n + plkn) |-

where the last equality comes from (3.19). Together with (3.17), it implies the first claim of
the lemma.
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To compute the limit of ¥7 as n — 0, we write U7 = U7 4+ ¥l with
v— 5 (s Sz — 51 |25 S 3 = —2D(GY % (z)1d
(e A +0 2 = —2D(Gg)(x) + pg(z)Id.

Let ¢ € C°(R3) a test function. We can write (U7, ) = (U], (0)) + (¥, — ¢(0)). The
second term is O(n), while the first term can be computed using the elementary formula
fBl l’il‘de = %(5” We find

3 3
. ’r] = =
%1m0<\111,<p) = 55’@(0) = (555, ©). (3.20)

For the second term, using the homogeneity (3.15), we find again that lim, (V3, p) = (U3, (0)).
Note that the pressure pls is defined up to a constant, so that we can always select the one
with zero average. With this choice, we find

(W, (0)) = /B (= 2D(G) + §1)(0) = =2 | DY) o(0)

——/ (n®G§+G}q®n)gp(0)——/ (n®Gs+ Gs@n) p(0) (3.21)
0B1 0B1

3 2 2
= 1 aBl(S” n)n®@n p(0) = 5580(0) = <5557 ©).

where the fourth equality comes from the elementary formula f 5B, nmjnknldsl = %(5@'51@1 +
dik0j1 + 0i105k). The result follows.

For later purpose, we also prove here the

Lemma 3.6.

1
/ GLdS" = GsdS" = — (/ IVGE|? + 3|S|2> .
0B, 0B, n° \Jpt 107

Proof.
/ GldST = / G (0,G% — psn) |- ds”  — / G (8uG — psn) | ds”
OB, OBy, K 9By, "

/ IVGL|*dx - Gs (0,Gs — pser) op,ds"
B'r] 8377

By (3.15), an |VG1|*dx = 77% I5, |VGL|?dz. The second term can be computed with (3.9):

3 3
Gs (8,Gs — pser) los, ds" = — > (Sn- _°_(Sn-n)n ) ds"
/aBn s (rGs = pser) lon, ds /é?B ( 87”72( " n)n) <27T773( " n)n) ’

9

- v S . 2d1:—752
167273 /331( n-n)ds Tox !

3.2 The renormalized energy

Thanks to the regularization of SV§ introduced in the previous paragraph, c¢f. Lemma 3.5,
we shall be able to set a rigorous alternative to the abusive formula (3.10). Specifically, we
shall state an identity involving Wy, defined in (3.6), and the energy of the function

e ZG” (x — ;) + NSt™L(SVS) = ZG” r—x;)—N g Gs(z—y)f(y)dy. (3.22)
i=1
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This function solves

N
— AR} 4+ Vpl =Y 8"z — ;) ~ NSVf, divh} =0 (3.23)
=1

and is a regularization of hy, cf. (3.11)-(3.12).

The main result of this section is the

Proposition 3.7.

— 25‘0‘ 2 N 112 3 9
N =N n1—>0< VAN~ 773(/31 VG + 15151 ) - (3.24)

Proof. We assume that 7 is small enough so that 27 < min;;|z; — xj[. From the
explicit expressions (3.11)-(3.22), we find that hn,h% = O(|z|72), V(hn, k%) = O(|z|73)
and pn, p = O(|z|73) at infinity. As these quantities decay fast enough, we can perform an
integration by parts to find

/ VAL |? = (ALY, b)) = (—ARY, + VT, BY)

= an (= 2;) = NSV £, hw) + O S"(x — 2;) = NSV, b, — hy)

—Z (S"(x ), hiy) +Z (SMx — x3), Gl(x — x;))
—<NSVf,hN ang:—xz — NSV, Bl —hy) =t a+b+c+d,

where we defined Rl := hy — GL(z — ;).

As hl]'\, is smooth over the support of S”(- — z;), we can apply Lemma 3.5 to obtain

%11}"1(1)(1 =— ;SV - hiy ().
We can then apply Lemma 3.6 to obtain

N 3
limb= ([ [VGs*+ ——|5*).
b= 25( [ VG + IS
As regards the fourth term, we notice that by our definition (3.13)-(3.14) of G, and the fact
that the balls B(z;,7) are disjoint, the function hy — kY, = >, (Gs(x — z;) — GL(x — ;) is
zero over U;0B(x;,n), which is the support of ). S"(x — x;). It follows that

d= —N(SVf hl - NZ/ SV -Gz — i) (f(z) — f(22)) da

B(zi,n)

—NZ/ SV - Gs(z — x) (f(x) — fa;)) da

B(zi,n)

where we integrated by parts, using that Gg — G is zero outside the balls. Let us notice
that the second integral at the right-hand side converges despite the singularity of SV - Gg,
using the smoothness of f near z; (by assumption (3.1) and Remark 3.2). Moreover, it goes
to zero as ) — 0. Using the homogeneity and smoothness properties of G} inside B, we also
find that the firt sum goes to zero with 7, resulting in

lim d = 0.
n—0
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We end up with

N 3 .
. 2 12 2 _ 7
lim ( VR |2 — 3 (/Bl IVGs|* + —107T]S| )) =— Ei SV - hiy (i) — (NSV £, hy)

n—0

It remains to rewrite properly the right-hand side: we first get

—ZSV hy(zi) ==Y SV-Gg(z; — =, +NZ SV Gs(wi—y)f(y)dy
7]

3N2

N 87T /R3><]R3\Diag gS(x B y)d(SN(m)(d(SN(:‘» - f(y>dy)

and integrating by parts

—(NSVf,hy)y=N | SV -hy(z)f(z)dx
R3

=N » (ZSV'GS(HU—%‘) - N SV-GS(x—y)f(y)dy> f(z)dx

R3

3N2

SB[ asto— ) sy () ~ F)

The last equality was deduced from the identity gs = 5T (SV) - Gg, see the line after (3.7).
The proposition follows.

We can refine the previous proposition by the following

Proposition 3.8. Let ¢ > 0 the constant in (H2). There exists C > 0 such that: for all
a<n< SN,

1 1 3
B2 / B |2 _ / L2y 2 1812)| < CN?p.
‘/RSW Nl [Vhi|” — e ( . IVGs|™ + 15 -1817)] < CN7n

Proof. One has from (3.22)

N
Wy = h + ) (G~ GE)(x — ).

i=1

It follows that
/ VA2 / VA = Z/ V(G — Gz — 21) : V(G — G — )
+2Z VR — G (z — ;)
After integration by parts,
V(G§ = GS)(- = i) : V(G — GS)(- — x5) = (ST = SY)(- — @), (G§ — GY) (- — x7)).

R3

while

[ VR VG~ G — ) = (30 8°( — 1) ~ NSV, (G5~ G3)(- — ).
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We get

/wagm /mw STUSY + ST (- — i), (G — G2)(- — )
i#£]

—2) N(SVF,(Gh— GY(- —2:)) + N((S*+8"),(GL - GY)) =ta+b+ec  (3.25)

We note that Gg — G is zero outside B, while S+ 5" is supported in B,,. Moreover, thanks
o (H2), for a < n < §, the balls B(x;,7) are disjoint. We deduce: a = 0.

After integration by parts, taking into account that Gg — (g vanishes outside B;, we can
write b = b, — b, with

QZN/ SV -GS(-—zi) (f — f(x:))

xz n)

by _2ZN/ SV - GY(- — i) (] = f(@).

(x4,m)

Let I,, the set of indices ¢ such that x; belongs to a 4n-neighborhood of O. By assumption
(H2), this set has cardinality bounded by CnN, with C' depending on the constant ¢ in (H2).
For all i € I, we write using (3.15):

C
[ SVGl-a) (- )| < Gl [ dzsc
Bl(ai,n) n B(zi,n)
For all i ¢ I,,, we use the fact that f is C' in B(z;,n): we find
" C
[ SVGh =) (F = F)| < SIS0l [ o —wildz < On,
5,1 n B(wi,n)

This results in: b, < CN?n.

The treatment of b, is slightly more subtle. Let y : R3 — [0,1] a smooth and compactly
supported function, with y = 1 in a neighborhood of the unit ball. For any r > 0, we define
Xr = X(x/r). For i € I, we write

[ SV-GHC-a) (S = [ SV G5 ) O~ x-S S
B(z;,m) B(zin)
+ / SV -GS — ) xal- — 2)(f — (1))
B(x,m)
=/, SV -GS(- — i) (xn — xa) (- — ) (f — fx3))
_ / SV - GS( — 1) (xy — Xa) (- — 2)(f — F (1))
B(zi,n)
+ / SV - G- —2) Xal- —2)(f — f(z2) = L+ o+ Is.
B(z;,n)

One has easily

C C
I < 3\f\|oo/ o <C, |Is] < 3Hf!oo/ Ya<C.
77 R3 @] R3
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As regards the first term, we notice that x, — x is zero in a vicinity of B,, so that

Ii= [ SV Gs( =) (xg = Xa)( ~2)(f = f(@) = 5V - v(a)

where v is the solution of the Stokes equation
—Av+Vp =SV ((xq = Xa)(- = 2) (f = f(z2)), dive=0 R

For ¢ € I,;, we use the fact that Vv is bounded in L®, which can be established in the same
way as we proved the bound (3.5). More precisely, following the same arguments (based on
[17]), we infer that

[Vo(z:)|| < C

for some constant C' that depends neither on « nor on 7: indeed, as f — f(x;) vanishes at
x = z;, we find that

1 - ¥ (0t = Xe)(- =20 (f = (@) o < €

for some constant C' independent of a, 7, for any field Xj, tangent at the boundary 0O: cfthe
proof of (3.5) for details. Hence, for i € I, |I1| + |I2| + |I3| < C. Eventually, for the indices

i In,
1

/
o=

‘/B(%n) SV -GE(- — i) (f = fz))] < C/B(

using that f is Lipschitz over B(z;,7). We end up with b, < CN?p, and finally b < CN?1.

xi,m)

For the last term ¢ in (3.25), we first notice that as G’k — G% is zero outside B,;:
(5% +87), (G5 — Gg)) = (5%, (G5 — Gg)) (3.26)
(8%, GL)y — (5%, Gg)
1 3
a NN T 12 i 2
52,68~ o ([ 1v6sE+ s

where we used Lemma 3.6 in the last line. By the definition of S¢, the remaining term splits
into

6 =- [

- (0rGg — pger) - Glds® + / (0rGS — pSer) - Glds®
Ba

0By

By Stokes formula, applied in B, \ B, for the first term and in B, for the second term, we
get

(84, Gl) = — /63— (0rGs — psey) - GLds" +/
n

VGgs : VG +/ VGS : VG
By\Ba Ba

= —/ (0rGs — pser) - GLds" + / VGS - VG
dBy, By

= —/ (0-Gs — pgey) - Glds" +/ G- (0rGL — ple,)
B, oB;

1 3
frd n = — 1,2 _— 2
(S, Gs) - (/Bl VGYP + 1519 )

From there, the conclusion follows easily.

If we let @ — 0 in Proposition 3.8, combining with Propositions 3.24 and 3.3, we find
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Corollary 3.9. For alln < gN_l/?’,
25|10 / ne N / 12 3 2 ‘
s 2 < e(N
Vi + S (VAR = 5] IVGEP + 115 )| < ()

2N2
where e(N) — 0 as N — 400.

This corollary shows that to understand the limit of Vy, it is enough to study the limit of

25|0| NN |2 N / 1,2 3 2
2IN2 (/RgWhN % A T )>

for ny == nN—/°, n < 5 fixed. For periodic and more general stationary point processes,
this will be possible through an homogenization approach. This homogenization approach
involves an analogue of a cell equation, called jellium in the literature on Coulomb gases. We
will motivate and introduce this system in the next section.

1/3

4 Blown-up system

Formula (3.24) suggests to understand at first the behaviour of [ps [VA%|? at fixed 7, when
N — +4o00. To analyze the system (3.23), a useful intuition can be taken from classical
homogenization problems of the form

1 1—
—Ah.+Vp. = SV <€3F(ZL‘,ZL‘/€) — 63F(1‘)> ,divhe =0 in a domain Q, h|so =0, (4.1)

with F(z,y) periodic in variable 3, and F(x fT x,y)dy. Roughly, Q would be like O, the
small scale ¢ like N~1/3, the term 5—3F (x,z / s) would correspond to the sum of (regularized)
Dirac masses, while the term E%F would be an analogue of N f. The factor E% in front of F
is put consistently with the fact that ), d,, has mass N. The dependence on x of the source
term in (4.1) mimics the possible macroscopic inhomogeneity of the point distribution {x;}.

In the much simpler model (4.1), standard arguments show that h. behaves like
1
he(x) ~ 5—2}[(33,33/5) (4.2)
where H(z,y) satisfies the cell problem
~AyH(z,") + V,P(x,-) = SV, F(x,-), div,H(z,-)=0, ye&T.

Let us stress that substracting the term - % F(z) in the source term of (4.1) is crucial for the
asymptotics (4.2) to hold. It follows that

/]Vh]2 /|VHxx/€|dx—0>//|VH:cy|dyd:z:
e—

Note that the factor €% in front of the left-hand side is coherent with the factor ﬁ at the
right-hand side of (3.24). Note also that

1
VH(z,y)|?dy = 1 / V., H(z,y)|*dy,
[ = i g [ 9 H G

Such average over larger and larger boxes may be still meaningful in more general settings,
typically in stochastic homogenization.

Inspired by those remarks, and back to system (3.23), the hope is that some homogenization
process may take place, at least locally near each x € O. More precisely, we hope to recover
limy Wy by summing over x € O some microscopic energy, locally averaged around z. This
microscopic energy will be deduced from an analogue of the cell problem, called a jellium in
the literature on the Ginzburg-Landau model and Coulomb gases.
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4.1 Setting of the problem

We will call point distribution a locally finite subset of R?. Given a point distribution A, we
consider the following problem in R?

—~AH+VP = Z SV6_,
zEA (43)
div H = 0.

Given a solution H = H(y), P = P(y), we introduce for any 7 > 0

H":=H+Y (G —Gs)(-+2) (4.4)

zEA

which satisfies by (3.8), (3.16):

—AH"+VP" =) " S"(-+2)
zEN (45)
divH" = 0.

We remark that, the set A being locally finite, the sum at the right-hand side of (4.3) or (4.5)
is well-defined as a distribution. Also, the sum at the right-hand side of (4.4) is well-defined
pointwise, because G — Gg is supported in B,,.

2

As discussed before this paragraph, we expect the limit of ng, |VAY|? to be described in terms

of quantities of the form

1
lim — H(y)|*d
Jm g [ dy

where K := (—%, %)3, for various A and solutions H" of (4.5). Broadly, systems of the

form (4.5) arise as blow-ups of the original system (3.23), zooming at scale N /3, and letting
N — 4o0. Indeed, let z € O (the center of the blow-up), and ny = nN~/3, for a fixed

n > 0. If we introduce

HY(y) = NP (x+ N7 Py), Pl(y) == N7l (x + N0y),

4.6
ZiN = Nl/s(xfoN) (4.6)
we find that
N
—AHJ + VP =S +zn) - NSV, fx+ N"By), divHj =0.  (47)
i=1

The separation assumption (H2) allows to build by a diagonal process a subsequence ¢(N)
such that z; o) — z; for all i, with A = {z;} a point distribution. Note that, under (H2) this
point distribution is well-separated, meaning that there is ¢ > 0 such that: for all 2’ # z € A,
|2/ — 2| > ¢. Moreover, along the subsequence p(NN), for fixed 7, the formal limit of (4.7)
yields a system of type (4.5).

We now collect several general remarks on the blown-up system (4.3). We start by defining
a renormalized energy. For any L > 0, we denote K, := (—%, %)3

Definition 4.1. Given a point distribution A, we say that a solution H of (4.3) is admissible
if for all p > 0, the field H" defined by (4.4) satisfies VH" € L? (R3).

loc
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Given an admissible solution H and n > 0, we say that H" is of finite renormalized energy if

1 1 3
"(VH) := — i H2- Z ANK 12 2
W(VH) im (/KR\V -3 1An R[(/Bl]VGS\ + -ISP)

R—+4o00 R3
exists in R. We say that H is of finite renormalized energy if H" is for all n, and

W(VH) := lim W(VH)
n—0

exists in R.

Remark 4.2. From formula (4. 4) it is easily seen that H is admissible if and only if there
exists one n > 0 with VH" € L? (R3).

loc
Proposition 4.3. If Hy and Hy are admissible solutions of (4.3) satisfying for some n > 0:
1

lim sup / VH]|? < +o0, hmsup / VH)|? < 400

Res o0 R3 Kn ‘ 1 ‘ R3 ’ 2 ‘
then VHy and V Hsy differ from a constant matriz.
Proof. We set H := H; — Hy = H{ — HJ. It is a solution of the homogeneous Stokes equation
with

1
lim sup — IVH? < +c0.
R—+o00 R KR

By standard elliptic regularity, any solution v of the Stokes equation in the unit ball:
—Av+Vp=0, divv=0 in B(0,1)
satisfies for some absolute constant C,
[V20(0)] < C|IVo| 2(50,1))-

We apply this inequality to v(x) = H(xo + Rx), x¢ arbitrary. After rescaling, we find that

C
V2 (0)| < 5 (sl VH o + ez
As R — +00, the right hand-side goes to zero, which concludes the proof.

Proposition 4.4. Let A be a well-separated point distribution, meaning there exists ¢ > 0
such that for all 2 # z € A, |2/ —z| > c. Let 0 <a <n < §. Let H be an admissible solution
of (4.3) such that H" is of finite renormalized energy. Then, H" is also of finite renormalized

energy, and
WINVH)=W*VH).

In particular, H is of finite renormalized energy as soon as H" is for some n € (0, ), and

W(VH) =W VH) foralln < §.
Proof. Let R > 0. As A is well-separated,
‘Aﬂ (KR+2\KR_2)‘ < CR?. (48)

From this and the fact that the limit W7(VH) exists (in R), it follows that

1
lim — / VH"? =0. 4.9
R—+o00 R3 KR+2\KR72 | | ( )
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Let Qg be an open set such that Kr_1 C Qr C Kg and such that
dist (0Qg , UseaB(—2,m)) > >0 (4.10)

where ¢ depends on ¢ only. This implies that G"(- + z), G*(- + z) are smooth at 9Qp for all
z € A, and that H", H® are smooth at 0Q2g.

We now proceed as in the proof of Proposition 3.8. We write

H" = H*+) (G§— GY)(- +2),

z€EA

/NH"P:/ \VH“|2+2Z/ VH*:V(G% —G%)(-+2)

Qr zEA

+ > V(GL—G)(-+2): V(GL - G)(-+ )

2,2/ €N Qr

After integration by parts, and manipulations similar to those used to show Proposition 3.8,
we end up with

2 «|2 m « Py « Py .
/QR|VH’7| /|VH| Z/ (G — G%)(- + 2)dS*(- + 2) (4.11)

zEN

Let us emphasize that the contribution of the boundary terms at €y is zero: indeed, thanks
0 (4.10), (Gl — G2)(- + 2) is zero at ONpg for any z € A. Similarly,

Z/ (G = G+ 2)dS*(- + 2) Z/Q (- +2)dS°(- + 2)

z€A z€EANQR

= > / (Gl — G (- + 2)dS*(- + 2)

zeEANQpR

The integral in the right-hand side was computed above, see (3.26) and the lines after:

Z / (GL—GY)(-+2)dSY(-+ z) = |AﬂQR\( oj?’) (/Bl ’VG§‘2+1;T\S\2>

z€EANQR

Back to (4.11), we find

1 1 3
/ WH”’Z—/ IVH[> = |[ANQp| (3—3> (/ \VG13|2+|S|2>-
Qr Qg n o B 107

We deduce from this identity, (4.8) and (4.9) that

1 |AN Kg / 112 3 9
li Vlgloa2 — n
im  — (/R | . < 1 IVGs|* + 10 |S] W'(VH),

and replacing R by R + 1:

1 ANK
im o / e - A0 KR / VGLE + —i512) | = wr(v .
R—too B3\ Jq,, as B 107

As Qr C Kr C Qp41, the result follows.
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4.2 Resolution of the blown-up system for stationary point processes

As pointed out several times, we follow the strategy described in [39] for the treatment of
minimizers and minima of Coulomb energies. But in our effective viscosity problem, the
points x; y do not minimize the analogue Vx of the Coulomb energy H . Actually, although
we consider the steady Stokes equation, our point distribution may be time dependent. More
precisely, in many settings, the dynamics of the suspension evolves on a timescale associated
with viscous transport (scaling like a2, with a the radius of the particle), which is much smaller
than the convective time scale (scaling like a). This allows to neglect the time derivative in
the Stokes equation: system (1.1)-(1.2) corresponds then to a snapshot of the flow at a given
time t. Even when one is interested in the long time behaviour, the existence of an equilibrium
measure for the system of particles is a very difficult problem. To bypass this issue, a usual
point of view in the physics literature is to assume that the distribution of points is given by
a stationary random process (whose refined description is an issue per se).

We will follow this point of view here, and introduce a class of random point processes for
which we can solve (4.3). Let X =R or X = Ty, := R/(LZ) for some L > 0. We denote by
Pointx the set of point distributions in X?3: an element of Pointx is a locally finite subset of
X3, in particular a finite subset when X = T1. We endow Pointx with the smallest o-algebra
Px which makes measurable all the mappings

Pointx - N, w— |ANw|, A borelian bounded subset of X.

Given a probability space (2, A, P), a random point process A with values in X? is a mea-
surable map from Q to Pointy, see [12]. By pushing forward the probability P with A, we
can always assume that the process is in canonical form, that is Q = Pointx, A = Px, and
Aw) =w.

We shall consider processes that, once in canonical form, are

(P1) stationary: the probability P on € is invariant by the shifts

T —=Q, w—ytw, ye X3,

(P2) ergodic: if A € A satisfies 7,(A) = A for all y, then P(A) =0 or P(A) =1.

(P3) uniformly well-separated: we mean that there exists ¢ > 0 such that almost surely,
|z — 2| > cforall z# 2 in w.

These properties are satisfied in two important contexts:

Ezample 4.5 (Periodic point distributions). Namely, for L > 0, a1, ..., ap in K, we introduce
the set Ag := {ay,...,an} + LZ% We can of course identify Ag with a point distribution in
X3 with X = T;. We then take = ']I“z, P the normalized Lebesgue measure on ']I‘?i, and
set A(w) := Ag + w. It is easily checked that this random process satisfies all assumptions.
Moreover, a realization of this process is a translate of the initial periodic point distribution
Ag. By translation, the almost sure results that we will show below (well-posedness of the
blown-up system, convergence of Wy ) will actually yield results for Ag itself.

Ezample 4.6 (Poisson hard core processes). These processes are obtained from Poisson point
processes, by removing balls in order to guarantee the hypothesis (P3). For instance, given
¢ > 0, one can remove from the Poisson process all points z which are not alone in B(z,c).
This leads to the so-called Matérn I hard-core process. To increase the density of points while
keeping (P3), one can refine the removal process in the following way: for each point z of the
Poisson process, one associates an "age” u,, with (u,) a family of i.i.d. variables, uniform

31



over (0,1). Then, one retains only the points z that are (strictly) the "oldest” in B(z, ). This
leads to the so-called Matérn II hard-core process. Obviously, these two processes satisfy (P1)
by stationarity of the Poisson process, and satisfy (P2) because they have only short range
of correlations. For much more on hard core processes, we refer to [8].

The point is now to solve almost surely the blown-up system (4.3) for point processes with
properties (P1)-(P2)-(P3). We first state

Proposition 4.7. Let A = A(w) a random point process with properties (P1)-(P2)-(P3). Let
n > 0. For almost every w, there exists a solution H"(w,-) of (4.5) in H! (X3) such that

loc
VH' (w,y) = Dl (r)
where Diy € L*(Y) is the unique solution of the variational formulation (4.12) below.

Remark 4.8. In the case X = T, point distributions and solutions H" over X3 can be
identified with LZ3-periodic point distributions and LZ3-periodic solutions defined on R3.
This identification is implicit here and in all that follows.

Proof. We treat the case X = R, the case X = Ty, follows the same approach. We remind that
the process is in canonical form: Q = Pointg, A = Pr, A(w) = w. The idea is to associate
to (4.5) a probabilistic variational formulation. This approach is inspired by works of Kozlov
[25, 7], see also [3]. Prior to the statement of this variational formulation, we introduce some
vocabulary and functional spaces. First, for any R%valued measurable ¢ = ¢(w), we call a
realization of ¢ an application

R,[#l(y) == d(ryw), w e Q.

For p € [1,4+00), ¢ € LP(2), as 7, is measure preserving, we have for all R > 0 that
E [k, |Bu[ollP = R3E|¢|P. Hence, almost surely, R,[¢] is in LI (R3). Also, for ¢ € L*>(1),
one finds that almost surely R,[¢] € L (R3). It is a consequence of Fatou’s lemma: for all
R >0,

B o [8]| o (505 = B lim 10 || Bo [8] | 50y < Limn ind BJ| Be ]| )
1/p
im i — limi »n1l/p _
Slgﬂ&f (E”R [ ]”LP(K )) —lz}gigf (Elo[")* = |0l L ()

We say that ¢ is smooth if, almost surely, R,[¢] is. For a smooth function ¢, we can define
its stochastic gradient V¢ by the formula

Vw¢(w> =VR, [¢] ‘y:07

where here and below, V = V,, refers to the usual gradient (in space). Note that V,¢(ryw) =
VR,[9](y). One can define similarly the stochastic divergence, curl, etc, and reiterate to
define partial stochastic derivatives 0.

Starting from a function V € LP(Q), p € [1,+00] one can build smooth functions through
convolution. Namely, for p € C2°(R3), one can define

prV() = [ )V (rdy

which is easily seen to be in LP(2), as

Bl vl <2 ( [ 1ot |dy)p (/ IV rrdr) = ([ 1oty |dy> EIV ()
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using that 7, is measure-preserving. Moreover, it is smooth: we leave to the reader to check
Rylpx V] =px Ry[V], VulpxV)=VpxV, py):=p(-y).
We are now ready to introduce the functional spaces we need. We set

Dy = {¢: Q = R3 smooth, 9% € L*(Q) Yo, V., - ¢ = 0},
V, := the closure of {V,¢, ¢ € Dy} in L*(Q).

We remind that S7 = div ¥", with U7 defined in (3.18). We introduce
M(w) ==Y W(z)
zZEw

Note that it is well-defined, as ¥" is supported in B, and w is a discrete subset. It is
measurable: indeed, U" is the pointwise limit of a sequence of simple functions of the form
>; ailya,, where A; are Borel subsets of R3. As

w— ZZailAi(z) = ZaﬂAi Nw|
ZEW 14 i

is measurable by definition of the o-algebra A, we find that M7 is. Moreover, as A is uniformly
well-separated, one has |17 (w)| < C||¥"||L~ for a constant C' that does not depend on w, so
that M7 belongs to L*°(12).

We now introduce the variational formulation: find D”H € Vs such that for all Dy € Vs,

ED}; : Dy = —EN": Dy. (4.12)
As V), is a closed subspace of L?(f2), existence and uniqueness of a solution comes from the
Riesz theorem.

It remains to build a solution of (4.5) almost surely, based on DJ;. Let ¢ = ¢y (w) a sequence
in D, such that V¢ converges to Dfy in L?(Q2). Let p € C°(R?). It is easily seen that
p * ¢i also belongs to D, and that 05V, (p x ¢r) = 05 (p x Vi) converges to the smooth
function 0% (p+ Dfy) in L*(£2), for all a. In particular, as Vi, x Vi, (p* ¢y) = 0, we find that
Vo X (p* D;) = 0. Applying the realization operator R,,, we deduce that

V x (p* Ry,[Df]) = p* V x R,[Df] = 0.

We recall that R,,[D7;] belongs almost surely to L7, (R?), so that V x R,,[Df;] is well-defined
in ngcl (R3). Taking p = p, an approximation of the identity, and sending n to infinity, we
end up with V x R,[Df;] = 0 in R?. As curl-free vector fields on R? are gradients, it follows
that almost surely, there exists H?7 = H"(w, y) with

VH"(w,y) = Ry[Dgy](y) = D1y (w)), Vy € RE.

In the case X = Tz, one can show that the mean of R, [Dy;] is almost surely zero, so that
the same result holds. Besides, because the matrices V¢, ¢ € D,, have zero trace, the same
holds for D;. Hence,

divH"(w, y) = trace(VH"(w,y)) = trace(D3)(ry(w)) = 0.

One still has to prove that the first equation of (4.5) is satisfied. Therefore, we use (4.12)
with test function Dy = V¢, where the smooth function ¢ is of the form

d=px (Ve x @), ¢:Q—=R3asmooth function.
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Note that for smooth functions ¢, ¢, a stochastic integration by parts formula holds:

EOuip¢=E | 0Rulg| Ruld) = —E | Rulg] 0:RulG] +E / niRul) Ruld)
Ky Ky 0K

= E [ RllaRuld = Bt

Thanks to this formula, we may write

ED} : Vo(px (Vu x @) =Ep* Dfy : Vi (Ve X 9)

— —EV. x (V- (5% D) - ¢.
Similarly, we find
—EN":V,(p*Vy X ) =EV, x (Vy-(pxM")-p.
As this identity is valid for all smooth test fields ¢, we end up with
Vi % (V- (5% D)) = Vo x (Vo - (5% 117).
Proceeding as above, we find that almost surely
—V x div R,[Dfy] = V x div R,,[M"]

which can be written
V x (~AH?) =V x div Y U(- + 2).
2€Q
It follows that there exists P7 = P"(w, y), such that

—AH"+ VP" =div Y U(-+2)=>_ S§(-+2)
ZEW ZEW

which concludes the proof of the proposition.

Corollary 4.9. For random point processes with properties (P1)-(P2)-(P3), there exists al-
most surely a solution H of (4.3) with finite renormalized energy and such that for allm > 0,
the gradient field VH", where H" is given by (4.4), coincides with the gradient field VH" of
Proposition 4.7. Moreover,

1 n2 M 12 i 2
W(VH) Tl)g(E/K1|VH| 773(/31|VGS|+107T|S| )>

where m := E|A N K| is the mean intensity of the point process, the expression at the right-
hand side being actually constant for n small enough.

Proof. By the definition of the mean intensity and by property (P2), which allows to apply
the ergodic theorem (cf. [12, Corollary 12.2.V]), we have almost surely

. [ANKRg|
1 —— =m. 4.1
T ®13)

Let no < § fixed, and H™ given by the previous proposition. We set

H(w,y) :=H"(w,y) + Y (Gs - G¥)(y + 2). (4.14)

ZEW
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It is clearly an admissible solution of (4.3). By Proposition 4.4, in order to show that H
has almost surely finite renormalized energy, it is enough to show that for one n < 7, almost
surely, the function H" given by (4.4), namely

H'w,y) = H(w,y) + Y (G} — Gs)(y + 2)
zZEW
=H"(w,y)+ > (G4 —G¥)(y+2)
ZEW

has finite renormalized energy. This holds for n = 19, as H™ = H™ and the ergodic theorem
applies. We then notice that

VH"(w,y) = D} (1y(w)), Djj(w) =D (w)+> V(GL—G¥)(2). (4.15)

We remark that Gg — GZP = 0 outside Biax(yn), S0 that the sum at the r.h.s. has only a
finite number of non-zero terms. In the same way as we proved that the function 1”7 belongs
to L°(Q), we get that >, V(GE — GL)(z) defines an element of L>°(Q). Hence, by the
ergodic theorem, we have almost surely

1
lim / \VH"? AE/ IVH"|?.
R—+o00 R3 K1

Combining this with (4.13) and Proposition 4.4, we obtain the formula for W(V H).

The last step is to prove that for all n > 0, VH"” = VH" almost surely. As a consequence of
the ergodic theorem, one has almost surely

1 1
limsup3/ |VH"|? < +o0, limsup3/ |[VH"? < 400
Rotoo B2 JKk, R—+oo I JKp

Reasoning as in the proof of Proposition 4.3, we find that their gradients differ by a constant:
VH(w,y) = VH"(w,y) + C(w).

Applying again the ergodic theorem, we get that almost surely EDY, = ED; + C(w). As D
belongs to V,, its expectation is easily seen to be zero. To conclude, it remains to prove that

ED}, =E}" ., V(G — G¥)(2) is zero. Using stationarity, we write, for all R > 0,
EY V(GE-G¥)( EZ/ V(G — GP) (2 +y)dy.
zZEW ZEw

We remark that for all 2 outside a max(n, 70)-neighborhood of 0K g, [ V(G{—Gg)(2+) =
I5 Ky (GL—GP)(z+-) = 0. It follows from the separation assumption and the L* bound
on V(G — G¥) that

EZ/ V(G — G™)(z +y)dy = O(1/R) =0 as R — +oc.

ZEW

5 Convergence of Vy

This section concludes our analysis of the quadratic correction to the effective viscosity. From
Theorem 1.1, we know that this quadratic correction should be given by the limit of Vy as
N goes to infinity, where Vy was introduced in (1.12). We show here that the functional Vy
has indeed a limit, when the particles are given by the kind of stationary point processes seen
in Section 4.
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5.1 Proof of convergence

Let ¢ > 0 a small parameter, and A = A(w) a random point process with properties (P1)-
(P2)-(P3): stationarity, ergodicity, and uniform separation. As seen in Examples 4.5 and
4.6, this setting covers the case of periodic patterns of points as well as classical hard core
processes. We set N = N(g) the cardinal of the set

{z €el, B(z,e) C O} ={z1N,..., 2NN}

where A := —A and where we label the elements arbitrarily. Note that N depends on w,
although it does not appear explicitly. From the fact that A is uniformly well-separated and
from the ergodic theorem (cf. [12, Corollary 12.2.V]), we can deduce that almost surely,

-1
lim N(g)e = lim |eA(w) N O] 3 = lim M]O[ =m|O| (5.1)
e—0 e—0

e—0 6_3‘(’)‘

so that we shall note indifferently lim._,o or limyx_, . Note that, strictly speaking, N = N(¢)
does not necessarily cover all integer values when £ — 0, but this is no difficulty.

More generally, for all ¢ smooth and compactly supported in R3, ergodicity implies
lim ! Z (x;) = lim Z xi) lim / dex = ! / x)dx
N—+oo N i:l(p ‘ _N~>+ooN oo ! _Nﬁ+oo €3N N ‘O‘ O(P

which shows that (H1) is satisfied with f = ﬁl@. The hypothesis (H2) is also trivially
satisfied, as well as (3.1). Our main theorem is

Theorem 5.1. Almost surely,

with m the mean intensity of the process, and H the solution of (4.3) given in Corollary 4.9.

The rest of the paragraph is dedicated to the proof of this theorem.

Let 7 satisfying n < § and n < §(m|O|)~ /3. By (5.1), it follows that almost surely, for e
small enough, en < §N— /3. By Corollary 3.9,

. 25|O‘ 12 3 2 _
M YNt o / v )3(/31 VG5l + 10715 )> =0 (52

We denote hl := R, see (3.22)-(3.23). Let H be the solution of the blown-up system (4.3)
provided by Corollary 4.9, H" given in (4.4), and P" as in (4.5). We define new fields hl, p!
by the following conditions: hZ € H!(R3),

- 1 1
hg(w,x):E—QH”(g) ]{952Hn(€)’ reO
ﬁ?(w,m)z(;P”(%) ]£)63P’7(8), xeO

— AR?+Vp! =0, divh?=0 in extO.

We omit to indicate the dependence in w to lighten notations. We claim:
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Proposition 5.2.

3 1

. N
2= e[ VG2 + IS = (V)

(ne)?

Proposition 5.3.
lime® [ |[V(h? —AD)* = 0.

e—0 RS

Note that, by Proposition 4.4 and our choice of n, W!(VH) = W(VH). Theorem 5.1 follows
directly from this fact, (5.2) and the propositions.

Proof of Proposition 5.2. We know from Corollary 4.9 that

WI(VH) = f@-z /

3
VH"2m/ VGL? + ——|S]
| VHE = (] VG g ISP))

From this and relation (5.1), we see that the proposition amounts to the statement

eb -
lim — Vh"2:E/ VH"?
E%,O,/Rg =B [ vH

A simple application of the ergodic theorem shows that almost surely

o . 1 x
— VhQQZ/VH" 2d —>IE/ VH"?.
o7 L, R = g [, 9 Py~ E [ 1w

It remains to show that

e—0

lim 86/ VA2 = 0. (5.3)
ext O

It will be deduced from the well-known fact that the Stokes solution A7 minimizes

/ VAP
ext O

among divergence-free fields h in ext O satisfying the Dirichlet condition hlso = hd|s0.

First, we prove that the H*/ 2(00)-norm of 3h goes to zero. In this perspective, we introduce

for all § > 0 a function ys with ys = 1 in a 3-neighborhood of 40, yx; = 0 outside a

2
d-neighborhood of 00. We write
12021 117200y = € R2X5 | 112 000y
< C (IIE°h2xs1 r2(0) + 1E3VRIXs | £2(0) + 1E2RIV X5 £2(0)) -

By the ergodic theorem and Corollary 4.9, e3Vh = V,H"(Z) converges almost surely weakly
in L2(O) to ED"H = 0. Let ¢ € L?*(O). By standard results on the divergence operator, cf
[16], there exists v € H}(O) with dive = ¢ — £, ¢, vl z10) < Coll@ll2(0)- As by definition
h has zero mean over O, it follows that

/63ﬁg¢—/63ﬁg(ap—][ (p)——/ESVﬁZU—)O as € — 0.
@ O ] ]

Hence, £3h converges weakly to zero in H'(O) and therefore strongly in L2(0). It follows
that for any given 4,

Ie*h2xsll20) = 0, [€°RIV XS]l L2(0) = 0 as e = 0.
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To conclude, it is enough to show that limsup,_,, ||53V7L?X5||L2(@) goes to zero as § — 0.
This comes from

IV xslsoy = [ IVH?C/P NG —p BIDAE [ 26 < o8 (5.4)

Finally, H637LZHH1/2(80) = 0(1). To conclude that (5.3) holds, we notice that

/ hg-n:/divhgzo.
00 (@

By classical results on the right inverse of the divergence operator, see [16], one can find for
R such that O € B(0, R) a solution h of the equation

divh =0 in extONB(0,R), hlso = h!|s0, B!aB(OR) =0,

and such that B -
1]l i1 ext 0nB0,R)) < ClIBLN 17200y = 0(e72).
Extending h by zero outside B(0, R), we find

/ VR g/ VA2 = o(e™0). (5.5)
ext O ext O

This concludes the proof of the proposition.

Proof of Proposition 5.3. Let h := h? — h!. It satisfies an equation of the form
—~Ah+Vp=R,+Ry+ Rs, divh=0in R
where the various source terms will now be defined. First,
Ry := o (hZ, p1)nlg(ext 0) So-

Here, the value of the stress is taken from ext O, n refers to the normal vector pointing
outward @ and sy refers to the surface measure on 0. We remind that 22 € H'(R?) does
not jump at the boundary, but its derivatives do, so that one must specify from which side
the stress is considered. Then,

_ 1 .
Ry := —a(hl,pl)nlso so = —gU(H"7P")(g)|aon o
with the value of the stress taken from O, and n as before. Noticing that SV f = — |Sn 59,
we finally set
N
R3 = —1(9 Z Sn8($ - xz) + @S?’L 89

eIl

where

IT = {i, B(z,e) ¢ O, B(zi,ne) N O # 0}.

Note that the term Rs is supported in pieces of spheres. From (3.17), we know that for all
n>0

/ ST = / (-AGL +Vpl) =0. (5.6)
R3 R3

This allows to show that the integral of Ry + Rj3 is zero. Indeed,

Ry = 84/( AH" 4 VP (-/e) = / > ST - Z/S”E — ;)

B(x;,me)NO#D i€ly
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so that N
/ (R + R3) = Sndsg = 0. (5.7)
RS 10] Jao

The point is now to prove that &*||Vh|[,2gs) — 0 as € — 0. From a simple energy estimate,
and taking (5.7) into account, we find

VAl aqes) = (Rah) -+ (Rai= f )+ (Rah= f . (59)

As (hZ,p?) is a solution of a homogeneous Stokes equation in ext O, we get from an integration
by parts:

(Ri,h) = — VhA!.-Vh < 7](5)573]\VhHL2(R3), ne) -0 ase—0, (5.9)
ext O

using the Cauchy-Schwarz inequality and the bound (5.5).

We now wish to show that
((Rs + Rs), h —]{9 By < n(e)e >Vl 2z, (5.10)

for some 7(e) going to zero with . More precisely, we will prove that for any divergence-free
p € H'(R?),

(Re + Ba).9) < n©)e (1Yol + lelmo). () +0ase >0 (511)
which implies (5.10) by Poincaré inequality. We first notice that
1
(Ro, ) = 23 (n- F2€a()0>(H*1/2(6(9)7H1/2(80)> (5.12)
where
Ff = &8 (2D () - p0) = 2D(E /) + (Pwrofe) = f PrGw/2) )
@

Then, we use the relation S"7 = div ¥", ¢f. Lemma 3.5 and integrate by parts to get

(o) — 32( [onw (72 it

tely

LT— i\ | )dx ﬁ n(x) - o(x) dsg(x
+/O\IJ”<€>-V90( )d>+|(9| 805() p(x) ds(x)

For a fixed 7, there is a constant C' (depending on 1) such that

> f (27w

<C Z/ |V<P| z)dx < C| Uieps Blai,ne)|["|IVel| 2(es) < O Vepl| 2 ps)

il B(zine)N

For the last inequality, we have used that all x;’s with i € I belong to an e-neighborhood of
90, so that |I7| = O(¢72). Hence,

R 3 ‘I’"<xi)'s@($)d86($)
il (5.13)
N _5/2

o0 805n(w)-gp(m)dsa( ) +n(e)e Vel 2o
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Let F3(w) := — 3 cp W(2) + mS, and F5(z) := F3(7,.(w)). We claim that E [, F3 = 0.
Indeed, by stationarity, for all R > 0

EY W(z) = EZ/ U (y + 2)d

zEN z€A

= E Z / \Iﬂ]y—i-zdy—l—RIE /KR\I!”y—i-z)dy

z€A, zEA
KRDB( Z7T]) aKRmB( Z7T]) @

1
+—F /qﬂy+zdy
w2 T [ v

z€EN,
KROB( Z,'I])_@

= IE Z / \I/"y+z)dy+R3 / Uy + z)dy
z€A, Kr zeA Kr

KrDB(—zn) OKRNB(—2z,m)#0

1 1
= —E|{z,Kr D> B(0,n) — z}y/ U(y)dy + O(=), R>1.
R B(0.n) R

We have used crucially the fact that U7 is supported in B(0,7). The O(4)-term is associated
to the points z € A which lie in a §-neighborhood of 9K g: see the end of the proof of Corollary
4.9 for similar reasoning. By sending R to infinity, we find that almost surely

E}%::-—n{/ﬁ W"-+7nS.
717

The last step is to compute |, B(0m) W7 which is independent of n by homogeneity. It is in

particular equal to lim,_,o(¥", 1), a limit that was already computed in the proof of Lemma
3.5, cf. (3.20)-(3.21). We get fB(o p U7 =5, which shows that EF3 = 0.

By the definition of F3, we can write

: 5= - pla)dso(a E n(x) - o(x) dsg(z
53%:5/80@%”6)—71-\11 < 5 ) o( )da()~|—|o| 805() o(z) dsp(z)
1 . N m
- /80 n() - F5(3) - o(x)dso() + (|O| - 53> [ sne
1
< =

< = | n(x)- F5(@) - e(@)dsa(x) +n(e)e @l gy, ne) — 0
€ Joao e—0

where the last inequality follows from (5.1). Plugging this inequality in (5.13), and combin-
ing with (5.12), we see that to derive (5.11), it remains to show that almost surely, for all
divergence-free fields ¢ € H'(0),

[(n - F< 0) (m-1290), 112000 < nE)lelluro)y, nle) »0ase—0 (5.14)

where F*© := F§ + F5. Notice that div (F5 + F5) = 0. We introduce again the functions xs,
d > 0, seen above. We get

(n- F*¢, 90>(H*1/2(8O),H1/2(30)> = (n-xsF", <P>(H*1/2(6(9),H1/2(80)>

=/(V><5-FE)-¢—/X5FE-V90
O O
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For the last term, we take into account that ¢ is divergence-free, so that the pressure disap-
pears: we find

I/Oxsts‘VsOI < (I2xs D(H)(-/2)ll12(0) + X6 F5(-/2)l22(0)) Il 1 (0)-

As seen in (5.4), we have
lim [|2x5 D(H)(-/¢) [ 72(0) < €9

and similarly, as EF3 = 0,
: €112
21_% X6 F5 [l 72(0y < CO.

For the first term, we write
L 7)o =2 [ Oxs- D) o= [ (Vxse)p+ [ (- F) -

We know that e3D(hZ) goes weakly to zero in L%(0O), so that it converges strongly to zero in
H=Y(0). As Vs ® ¢ belongs to H}(O), we find that for a fixed 4

!Q/OVM -e3D(RY) - | < CllE2D(AD) || ir-1(0) IV x50l 110y < n(E) 0l (0)-
Similarly, as EF3 = 0, F§ converges weakly to zero in L?(O) and we get

| /0 (Vxs - F5) - ol < (@)l o).

The last step is to prove that e3p? converges weakly to zero in L?(Q), which will yield
| [0 el < nelelmion

As above, for ¢ € L*(0), we introduce v € Hj(O) such that dive = ¢ — £, ¢, [[v]| g, ) <
Col|#ll 12(0)- Then, using the equation satisfied by pZ in O:

—AhT 4 VP! = div F§

we find after integration by parts

/e3p2¢=/s3pg(¢][ ¢):/e3vhg:w+/zf§:vv.—>o.
o o o o o e—0

This concludes the proof of (5.14), of Proposition 5.3 and of the theorem.

5.2 Formula for periodic point distributions

Theorem 5.1 gives the limit of V for properly rescaled stationary and ergodic point processes,
under uniform separation of the points. Such setting includes periodic point distributions, as
well as Poisson hard core processes. We focus here on the periodic case, for which further
explicit formula can be given. For L > 0, we consider distinct points a1, ...,axs in K, and
set Ao := {a1,...,an} + LZ%, which can be seen as a subset of T%. In Example 4.5, we
explained how to build a process on T3 out of Ag, with A(w) = Ag +w, w € T3. By a simple
translation, the results above, that are valid for Ag + w for a.e. w, are still valid for w = 0.
Thus, for A = Ay, we deduce from Proposition 4.7 the existence of an LZ3-periodic solution
H" of (4.5) with VH"” € L? . If we further assume that H” is mean-free, it is clearly unique.

loc*
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Then, following Corollary 4.9 and Theorem 5.1, there exists an LZ3-periodic solution H of
(4.3), such that

— n
G oaz V(VH), W(VH) = lim WI(VH),

M 3
n — _ 1 n2 _ 12 2
W (VH) 71]1_r>r(1) (%KL |\VH" ar </Bl IVGg|” + 1071-|S‘ ))

where H" is associated to H by (4.4). We have used that in the periodic case, the intensity
of the process is m =

(5.15)

%, while the expectation is simply the average over K.

To make things more explicit, we introduce the periodic Green function Gg, : R3 — R3
satisfying:

—AGgs+Vps =SV, divGsr =0in K7, Gsr, LZs—periodic, / Gs,, =0. (5.16)
K,
The Green function Gg , is easily expressed in Fourier series. If we write

Gsply)= > T vQs (k)

kez3

a straightforward calculation shows that for all k € Z3

~ 1 k Sk-k k 7
Gor(k) = — (52 — )=t bk
s.0(k) 2wL2\k|< L w) orL2RE ™

where W,i‘ denotes the projection orthogonally to the line Rk.

Proposition 5.4.

. 2517
N—+o0 - 2M?2

> SV-Gsplai—a)+M lim SV - (Gs,r(y) — Gs(y))
i#je{1,...,M} Y

Proof. Clearly, the LZ3-periodic field defined on Ky by H(y) :== S0, Gsr(y + a;) is a
solution of (4.3), and by Proposition 4.3 VH and VH differ from a constant matrix. As
V(H—H) = V(H"—H") is the gradient of a periodic function, we have eventually VH = VH.
Up to adding a constant field to H, we can assume that

M
= Z Gs,r(y + a;).
i=1
Then, if 7 is small enough so that B(a;,n) C K, for all i, H" is the L-periodic field given on

K by
M

H'(y) =Y (Gsrly+a)+ (Gh— Gs)(y +ai)) .
i=1
We integrate by parts to find

1
L3/ \VH"? = LS/ ZH"dS” + a;)

KL =1
1
- 3/ ZGSL +a;)dS" (- + a;) + / ZG" )(- 4 a;)dS(- + a;)
L KL KL
SZ/ GSL —i—a] )dS" (- —|—a2 ng GSL —l—ai)dS"(-—i—ai)
i#]
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where we have used that the last term of the second line vanishes identically. We then write
Gs1 = Gs + ¢s,1 with ¢g5 1, smooth near 0 to obtain
1
o V=Y [ Gsatraista)
175] L

Z ¢SL +a;)dS" (- + a;) L3/ GgdS".

Combining with Lemma 3.6 and (5.15), we get

2515 1 1
: _ o o i NIST () L \AST (. 1 g
A}grcl)ovN_ 2M2<;¢j 73 /KL Gs (- +a;)dS"( +az)+L3 % /KL ¢s,1.(- + a;)dS"( —i—az)).

We conclude by the last point of Lemma 3.18 that

2513
lim Vy = o

Jim W(ZSV-GS,L(%—%) + MSV"WL(O))'

i#]
Proposition 5.5 (array of points). In the special case where L =1, M =1, we find
5

li = —pulS|*.

Ngnoo VN 2 'LL‘S’
By Theorem 1.1, it follows that the formula for the effective viscosity at order ¢* is

5 5
W=+ 50+ 50"+ o(6%).

Proof. When M = 1 and L = 1, the formula from the last proposition simplifies into
limy Vv = 225V - ¢51(0), with ¢g1 = Gg1 — Gg. The periodic Green function Gg; was
computed using Fourier series in the last paragraph. We found

B i ko Sk-k kY iy
Gsalw) = > 5o <S H R \k!)e

kez3

1

2ik-y
T

1 k-
=SV 2 g™ + S (VeVIV
keZ3 kez?

We use formulas from [2] :

1 2imky _ 1 /1 2
i - < 9]
S ™ = = (et 2P+ 0lulY)

and ) L (1l
2imky _ _ = (WY _ . _ 4 2, 44 O(lyl®
> e o (Mo = S+ it + 0l )

where ¢; and cy are constants. Inserting in the expression for Gg 1, we find
1 1
Gisals) =5 (2 + 5+ 0l +5: (Vo vy (-4 B o)

8t 120
1 S?J (1 Yy 2 ) 2
- “Sy—S:(Vov) | —=L +— +0
47T|y|3 y—S:( ) ™ Oly\ Yy (ly%)

1
3
1 Sy 1 (e Yi 5o Y 3Yiyiy | Yjei
- A R S [ =2 _ 7Y L Y
gt 3° Z T\ yl? % PR

- Z Sij (2viej + 2yjei + 2655y) + O(Jy[?)
7-]
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and after simplification,

o 1 . 2 2
Gsi(y) = 3Sy I 15Sy+0(|y! )-

Moreover, we know from (3.9) that

3 (- )y

GS(y) = _g |y’5

We end up with
_ L2 _ 9 a2
SV-¢5,1(0)—5\5’] , 11]{]I1VN_2|S| .

5.3 Formula in the stationary case with the 2-point correlation function

We consider here the case of random point processes in R? (X = R), such that (P1)-(P2)-(P3)
hold. We further assume that the mean density is m = 1. We assume moreover that this point
process admits a 2-point correlation function, that is a function p2 = pa(z,y) € L, (R3 x R3)
such that for all bounded set K and all smooth F in a neighborhood of K:

B Y Fad)= [ ey
z#2' €K KxK

As the process is stationary, one can write pa(z,y) = p(x —y). Our goal is to prove the
following formula:

Proposition 5.6. Almost surely,
l. _ = . o . o
lj{jnvN lim Z SV -Gsr(z—2)
z2#2'€ANK],

1
By SV -Gs(z—2)p(z — 2")dzd?'.

— lim —
2 L—+oo L3 K xKy,

where G 1, refers to the L73-periodic Green function introduced in (5.16).

Proof. Let 1 small enough so that Proposition 4.4 holds. We have
1 3
W(VH) =W'(VH) = — (E/ IVH"|? — 3(/ IVGL|* + |52)) .
K1 n Bl 107

Let Hy, = Ef\il Gsr(-+ a;), where {a1,...,ap} = AN K. Note that Hy, is associated to
the point process Ay, obtained by LZ%periodization of A N K. We shall prove below that,

1
2 : 2
E/Kl IVH"|? = L1—1>I—ir-loo 73 /KL |VH]|* almost surely (5.17)

As M — MK 9 a5 [ — +o0, it follows from (5.17) that

1 M 3
- [ I n2 _ 112 , 2 Q|2
W(VH) _Lhrf <L3 /KL |VH]| L) (/B1 VG| + 107T|S| ))

= i "
lim WIVEr)
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We would like to replace W(V Hp) by W(V Hp) in the previous equality. However, we can not
apply Proposition 4.4 directly. Indeed, the LZ%periodized network A; may have a minimal
distance between points that depends on L, which raises the problem of inverting the double
limit in L and 7. Therefore, we introduce the auxiliary function H L = Zf\il Gsr(- — a;),
where

{ai,...;ay} ={z € ANKy, dist(z,0Kp)> 7éian]z—z’]}.
2#£Z' €

The difference between the two sets {a;} and {a;} has cardinality O(L?). Thanks to this and
a simple energy estimate on H] — H}, we find

1

L?’/ |\VH] —VH}|? -0 as L — +oo
K

and in turn

lim W'(VHp) = lim W'(VHp) = lim W(VH)

L—+o00 L—+o00 L—+o00
~ lim (i 3 5V - Gsp - i)+ L tim SV (Gs.1) ~ Gs(v))
L—+oo \ L3 3 AT T I3 50 :
i#je{l,....M}

where the second, resp. third, equality comes from Proposition 4.4, resp. Proposition 5.4.
Using that

Gs.r(y) = %G&l (f) » Gsly) = %GS (f)

we get that

M .
15| 1m S (Gs. — Ge)y)| < €

lim SV - (Gg,1 — GS)(?J)‘
y—0

C/
< =] lm 5V - (Gs1 — Gs)(y/D)| = O(L%).
L3 y—0 ’
Similarly
1 .
ﬁ‘ Z SV'GS,L((IZ'—CL]‘)— Z SV'GS,L((M—(JJ]’))
i£je{l,...,M} i#je{l,...,M}
1 C~Li — CNLJ' a; — aj
=75 X SV-Ga(TT - X SVt
i£je{l,...,M} i#je{l,...,M}
After reindexing, we can always assume that @; = a; for i = 1,..., M. With this simplification,

and using that Gg 1 behaves like Gg near 0, we obtain

1 - -
ﬁ) > SV-Gur(ai—a;)— Y. SV-Gspla—a))
i#je{1,..,M} i#je{l,..,M}
C 5 C 1
<13 > ja; — a7 < o5 > IlmL[=0(mL|L™
i¢{1,..., M},jg{l ..... M} ig{1,...,M}
1#]
‘We obtain
. 1
W(VH) = lim — > SV-Gsrlai —aj) (5.18)
i#je{l,.,M}
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This is the first formula of the proposition. To prove the second one, it is enough to show
that 75 Yizje(1,..m SV - Gsr(a; — a;) is bounded uniformly in L and w: indeed, taking the
expectation of (5.18), we find by the dominated convergence theorem:

. 1
W(VH) = lim E - > SV-Gspla—aj)
i#je{l,...M}

and the formula follows from the definition of the correlation function. To show the uniform
boundedness, we use again the the relation Ggr(y) = %Gs,l (f)? and the fact that G
behaves like Gg near 0: the point is then to establish the uniform boundedness of

1 a; — a;
76 > SV Gs(=—F),
i#je{l,....M}

which is done by mimicking the proof of uniform boundedness of Vy in Lemma 3.1: L is
analogue to N/3, while a; /L is analogue to x;.

The final step is to prove (5.17) almost surely. We set ¢ := %, and introduce for all z € Kj,

i) = S

i Ly
g2 €

), pl(z)= ;3171:(

and similarly, for all x € K7,

-
P = 5P~ £ 5PC)

where (H", P") refers to the field built in Proposition 4.7. Clearly,

1
6 Lk VH 12
/Kl ‘ L3 Jk, L

while, by the ergodic theorem, one has almost surely:

_ 1
56/ VR = 3/ \VH"? ——>E/ |\VH"2.
K L K, e—0 K

It remains to show that

€8 V(AT —hD)? -0 ase—0
K

We notice that the difference h. = hl — h satisfies the Stokes equation
1
—Ah. + Vp, = 6—3div (Re — R.r), divh.=0 in Ky,

where

R. := Z\I/"(x/e—i—z), R, = Z U (x/e + 2)

zEA zEAL

and where we recall that Ay is obtained by LZ3-periodization of A N K. Testing against
eSh,, we find

€8 / |Vhe|? = — / (R. — R..1)e*Vh, + Fon-e3(he —{ he) — Gen - e3h,
Ky Kq 0K K1 0K,
(5.19)
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where

with

F(z) =Y U(zfe+2) - SG(z) = Y W(z/e+2)— S

zEA z€NL

Note that both F. and G, are divergence-free.
To handle the first term at the right-hand side of (5.19), we notice that

{z € AA AL, KN B(—z,n) # 0} = O(L*) = O(™?),

resulting in
3 2\ 2 3 1/2).3
| o= Ren)evhe <0 [ 0R) IS ey < O Vhl g,
K1 R

As regards the second term, we proceed exactly as in Paragraph 5.1 (replacing O by Kj),to
show that for all divergence-free p € H' (K1),

| - Fon-of <n(@)IVeollrzkyy, n(e) >0 ase—0.
1

As regards the last term, we take into account the periodicity of H} and G to write

Gen - 3h. = Gen - hldzx.
8K1 aKI

As faKl h?-n =0, we can introduce a solution ®. of
divd. =0 in K1, ®clor, =*hllor,, 1Pl mxy) < Cle® o | e ory):

Proceeding as in Paragraph 5.1 (replacing O by K1), one can show that He?’BgHHl/z(aKl) goes
to zero with ¢, and so [|®°|| g1 (k) goes to zero as well. Eventually, we write

| Gsn-s3ﬁgdx|:|/ G. . Vo,
0K K4

—| N (2D<Hg)(-/a) +é) V.|

1 1/2
< O ( GaIVHL ey + 1971 +1) 1982l < .|

Hence, we find
6 2 2 2
[ VAP <C (e +[VRE) 0
Kq e—0

which concludes the proof.

47



Acknowledgements

We express our gratitude to Sylvia Serfaty for explaining to us her work on Coulomb gases
and being a source of fruitful suggestions. We acknowledge the support of the SingFlows
project, grant ANR-18-CE40-0027 of the French National Research Agency (ANR). D. G.-V.
acknowledges the support of the Institut Universitaire de France. M.H. acknowledges the
support of Labex Numev Convention grants ANR-10-LABX-20.

A  Proof of Lemma 2.4

For any open set U, we denote f;; = ﬁ Jir- By (H2), we have

d:= E]\771/3‘ < min i — 4]
4 i#j
We write
A=A+ Ay + Al
with
L= ][ [Ay]) @i — 2) — Dol Ay]) (s — o)) de
j#i7 B@id
12—2][ i —a') ][D :c—x)dx)dx'
i#i” B@id)
A;d—z][ ][Dv N(x — 2')dxdx'.
i#i” B@id)
Setting y; = N~1/3%;, using that for 7é Js lvi —yj| > %(c—k lvi —yj]) > ¢,
|4
Ajq| < Ca® A <Co) 7
Z| Ti— X J|4 Z C"“yz yj’)4

J#i

m and b; = A;, we deduce

Dol <oty Al
i j

From the inequality (2.35), applied with a;; =

Similarly,

Ajl
< Cd? Al < Cl¢3 AL
A2 Z| |4| i ZC+|yi—yj|4

This leads to

4
Yo lALT <coE Y|4l
i i

The last term is the most difficult. We follow [20]. Let us remind that

CL3$

’U[A]:—§A (z ®x)| 2

2
Let xq(z) = x(x/d) a smooth function that is 0 in B(0,d), 1 outside B(0,2d). Introducing

z‘ 7|

, we can write that

the function Fa = >, Ajlp(,; ), using that d < min;;

g =5 | [ xalai = Ko - ) Pa(e')da'da
B; JR3
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where K(x) is an endomorphism of the space of symmetric matrices, defined by
S 4m —2 T
K(z)A = _5(?) D(A ey ’5)

We then split A§73 = M; + N;, with
1 / / / /
M; = — Xd(x — 2" )K(x — 2" )Fa(z')dz' dz,
d3 B; JR3

]' / / / / /
N = d/B | Gt = a') = xae = )@ = ') Paa)) ' do.

By Holder inequality,
1 3¢
M7 < ¥ | (xaK) * Fall

and so 1 s
29
E |M; |7 < —d3qap H(XdK) *FA||qu(R3)‘

7
The kernel 4K enters the framework of the Calderén-Zygmund theorem, see for instance
[30, Chapters 4 and 5]: for all 1 < ¢ < 400, the operator (XdK) * is continuous from L?(R3)
to LI(R3), with
| (XdK) * |l g(ra,pay < Cy-

We stress that the constant Cj; depends only on ¢, and not on d, as can be seen from the
rescaling 2’ := 2/ /d. Tt follows that

C 3¢
M < 0 Al g
i
As the balls B(xzj,d) are disjoint, |ZAle(wj,d)|q => |Aj|qlB(xj7d), so that HFA||%q(R3)
4{ > |Aj|qd3, and

Z\M\qw'() Z|Arq<c¢pzw

To bound N;, we notice that for all x € B;, the support of 2’ — yq(x; — ') — xq(z — 2') is
included in

(B(xi, 2d) U B(z, 2d)) \ (B(a:, d) N Bz, d)) C B(z,2d + a) \ B(z,d — a).

(remark that by definition of ¢, a is less than d for ¢ small enough). We get

1
|V;]9 < T v MlB (0,2d-+a)\ B(0,d— aK‘*‘FA‘H

so that
Z|N| = d3 ap ||‘1B(02d+a)\B(Od a) |$| ‘*‘FA’HLq (R3)

3 2d 4+ a
S—qap}ln(d

)AL s
0"() Z\A\q<c¢pZ|A|q

using that for ¢ < 1, a < d and ‘ In (i}if;)‘ is bounded by an absolute constant.
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