A HOMOGENIZED LIMIT FOR THE 2D EULER EQUATIONS IN A
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ABSTRACT. We study the motion of an ideal incompressible fluid in a perforated domain. The porous
medium is composed of inclusions of size a separated by distances d and the fluid fills the exterior. We

analyse the asymptotic behavior of the fluid when (a,d) — (0, 0).

If the inclusions are distributed on the unit square, this issue is studied recently when % tends
to zero or infinity, leaving aside the critical case where the volume fraction of the porous medium is
bounded and non-zero. In this paper, we provide the first result in this regime. In contrast with former
results, we obtain an Euler type equation where a homogenized term appears in the elliptic problem
relating the velocity and the vorticity.

Our analysis is based on the so-called method of reflections whose convergence provides novel esti-
mates on the solutions to the div-curl problem which is involved in the 2D-Euler equations.

1. INTRODUCTION

For inviscid fluids in a perforated domain, the only mandatory boundary condition, known as the
impermeability condition, is that the normal component of the velocity vanishes. However, the standard
tools in the homogenisation framework were developed for the Dirichlet boundary condition. This
explains that most papers have focused on viscous fluid models where we can assume the no-slip
boundary condition: see [T}, 2, 17, 24], 27] [30] for incompressible Stokes and Navier-Stokes flows and
[9, 10}, 20} 23] for compressible Navier-Stokes systems. Among the exceptions, we mention [3] where
the Navier slip boundary condition is considered, but with a scalar friction function which tends to
infinity when the size of the inclusions vanishes.

Before the studies of the second author, the only articles which handle inviscid flows [19] 25] consider
a weakly nonlinear Euler flow through a regular grid (balls of radius a, at distance a from one another).
Using the notion of two-scale convergence, they recover a limit system which couples a cell problem
with the macroscopic one, a sort of Euler-Darcy’s filtration law for the velocity.

For the full Euler equations, when the inclusions are regularly distributed on the unit square, the
second author together with Bonnaillie-Noél and Masmoudi treats the case where the inter-holes dis-
tance d is very large or very small compared to the inclusion size a. In the dilute case, i.e. when % tends
to infinity, it is proved in [7] that the limit motion is not perturbed by the porous medium, namely, we

recover the Euler solution in the whole space. If, on the contrary, g — 0, the fluid cannot penetrate the
porous region, namely, the limit velocity verifies the Euler equations in the exterior of an impermeable

square [I6]. Therefore, the critical case where g — k > 0 is not covered by the analysis developed in

these two previous articles. Our goal here is to provide a first result in this very challenging regime.

We give now in full details the problem tackled in this paper. Let Kpys be a fixed compact subset
of R? and K be a connected and simply-connected compact subset of [~1,1]? such that 9K is a C1®
Jordan curve, for some o > 0. We assume that the porous medium is contained in Kpjy; and made of
tiny holes with the following features:

e the number of holes is large and denoted by the symbol IV ;
e each hole is of size a > 0 and shape K:

Ky ==z + 5K, (1.1)
where the NV points x, are placed such that Kf C Kpy; ;
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e the minimum distance between two centers xy is larger than d > 0.

We point out that d denotes here the minimum distance between centers, but as we consider regimes
where d/a > 1, the results would be the same considering d the distance between holes, but it would
complicate uselessly the analysis throughout this paper.

The fluid domain Fy is the exterior of these holes. Our purpose is to compute a homogenized system
when the indicator function of the porous medium:

N
pi=> lpg,a) (1.2)
/=1

is close to a limit volume fraction k. We restrict to pointwise small volume fractions. Namely k is
assumed to belong to the following set:

FV(eo, Kpar) i= {k € L®(R?), supp(k) C Kpar, [Ell ey < 22} (1.3)

where €9 > 0 is a parameter which will be fixed later on sufficiently small. Consistently, we restrict to
the case where a/d < 9. To summarize, the domains considered in this paper satisfy:

N
Fn = R2 \ ( U K?)? N C Kpar, d = min dist (H?e,l'p> = g- (AKparco)
=1 7 =0

Roughly speaking, & = 0 corresponds to the dilute case where a/d — 0, whereas k = L,1j2 represents
dense porous medium where a/d — oo. Volume fractions k verifying correspond to small data
in the critical regime which is not covered by [7, [I6]. We remark also that the case k = 0 previously
studied is covered by our analysis.

As is standard in the analysis of Euler equations in perforated domains, we divide the study in two
steps. The first crucial step is to understand the elliptic problem which gives the velocity in terms of
the vorticity (the div-curl problem). For instance, the two key properties in [16] are some estimates for
the stationary div-curl problem. Herein also, the important novelty is a refined estimate for this elliptic
problem that we explain in a first part. This information is then plugged into the Euler equations in
vorticity form in the second step of the analysis.

1.1. Main result on the div-curl problem. Any tangent and divergence free vector field in Fx
can be written as the perpendicular gradient of a stream function 1. When the vorticity f of this
vector-field is bounded, has compact support, and zero circulation is created on the boundaries, this
stream function is computed as the unique (up to a constant) C' function solution to the following
elliptic problem:

AYy = fin Fy, lim Vyy(z) =0, 0;¢ny =0 on 0Fy, Opy ds = 0 for all £. (1.4)
|z|—o00 oK§
The main purpose of the following theorem is to show that — in the asymptotic regime under consider-
ation in this paper — ¥ is close to 1. the unique (up to a constant) C'* function solving a homogenized
problem. It appears that this homogenized problem depends on a matrix Mx € M2 (R) associated to
the shape of IC, and reads:
div [(Io + kM) V] = f in R?, lim Vip.(x) = 0. (1.5)
|z|—o00
For instance, if IC is the unit disk, then Mg = 2I,. In Section [2] we show that we can compare the
asymptotics of 1. and ¥ to the solution of the Laplace problem with source term f given by:

n(e) = 5= [ Inlle =) (w) .

:27'(‘

in the sense that the differences ¥ (z) — 9o(x) and ¥.(x) — () both converge to a constant when
|z| — co. In the paper, we fix this unknown constant by imposing that

| o Un(z) —vo(x) = lim ¢e(z) — ho(z) = 0.
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With these conventions, our main result is:

Theorem 1.1. Let Kpy € R%,and €9 > 0 sufficiently small. For any Ry > 0, My > 0, n € (0,1),
p € (1,00) and O € R?, there exists C' such that for any k € FV(co, Kpn), any Fn verifying
(Axpy el and any f satisfying Supp(f) C B(0, Ry) and || f|peow2) < My, the solution ¢ of
can be split into
YN = Ve +T1 v +Ton + kN
where Al'; n =0 in R2\ Kpys for j =1,2 and
a\3-n el-n) 1

IVEL 22 zyno) P2 2 gm0y < € [(d) i = Rl gy = Rl sy + 1l e ey

Remark 1.2. We emphasize that this theorem implies that ¢, is a first-order approximation of ¥ in
terms of the porous-medium volume-fraction. Given k € FV(g9, Kpps) the maximal porous-medium
volume-fraction is related to [|k||fec(g2y while for the discrete counterpart, i.e. a fluid domain Fy

verifying (Ax,,, =), it is related to (a/d)?. Consequently, the remainder term:
a\3-n 9
(3)7 "+ Ikl ey

2
is superlinear in terms of ¢ := <%> + ||kl oo (r2), leaving the possibility to compare the first-order

expansions of ¥, and ¥. We note also that the error term ||pt—k||y37—1,» corresponds to the replacement
of a discrete problem by a continuous one and can be chosen arbitrary small for N large enough and
well-placed (z¢)r=1,.. N-

We emphasize also that, via standard energy estimates, 1. is indeed the leading term of the expansion
because 1. = O(1) (see also Section . The candidate 1. is a better approximation than the solution
1o of the elliptic problem without any influence of the porous medium:

Atpg = f in R?, ‘ 1|im Vipo(z) = 0. (1.6)

Indeed, writing A(¢g — ¥.) = div(kMxV.) and performing standard energy estimates, we obtain
that ¥ — 1. = O(e?) hence
N — o = O(e?) > Y — .

It is also a much better approximation than the solution g in the exterior of the impermeable square:

Avg = fin R*\ ([0,1]*), lim Vig(z) =0, d.1bs =0 on 9([0,1]%), /a o Onths ds = 0.

|z|—o0
Indeed, we also have in this case ¥y — g = O(1) hence
YN —Ps = O(1) > ¢y — ..

The starting point of the proof of this theorem consists in rewriting the elliptic problem (1.4)) into

AyYy = fin Fy, lim Viyy(z) =0, vy =5, on K7, / Ontyn ds = 0 for all £,
|x\%oo ’ (9]Cf,f‘
where (1/1}}7()4:17“.7 ~ are N unknown constants (note that this family of real numbers is also defined up
to an additive constant). These constants can be seen as the Lagrange multipliers of the next flux-free
condition. A first candidate to approximate 1y is naturally 9. This candidate matches the pde in
the fluid domain Fp, boundary condition at infinity, and flux conditions on the holes, but not the
boundary condition on 0Fy. So, we add a corrector to g which cancels the non-constant part of g
on the K7. This corrector is computed by summing solutions to cell problems around each of the holes
Ky as if it was alone. Taking into account that the holes are small, we could choose as model cell
problem the following one (where K := aK):
A =0in R*\ K%, ¢(z) = Az +¢*,  lim 9(z) =0, on OK?,

|x|—o00
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with A € R? a data representing the forcing by v on the boundaries and v¥* an unknown constant.
Up to a shift in space, we show in Section [2] that we can alternatively choose:
Ay =0in R*\ K% (z) = Az on 0K,  lim o (z) = 0.
|z|—o00

Obviously, the solutions to these elementary problems do not take into account the other holes. So
summing such solutions translated around the (Kf)—1, . n we create again an error term in the bound-
ary conditions on the holes. The strategy that we implement here is to introduce an iteration process
in which we correct after each step the new error in the boundary conditions on the holes. This method
is known as the "method of reflections" and has been widely studied in the context of elliptic problems
(see 18| [13] for instance and [28] in the situation studied herein). It is recently adapted to the Stokes
problem to study the effective viscosity problem by the first and last authors [12] (see also [26]).

We point out that our elliptic problem is also related to the perfect conductivity problem,
namely when the conductivity tends to infinity (see the Appendix of [6] for the link). In this context,
there are many results in homogenization, and we refer to the recent result of Bonnetier, Dapogny and
Triki [§] for an overview of the literature. However, we did not find a result of the form of Theorem
We guess that Theorem has its own interest and could be used in various problem (for instance
in solid mechanics or electromagnetism). But, we restrict now to an application for the study of fluid
motions.

1.2. Application to the 2D Euler flows. Even if the Euler equations is the oldest PDE, the study of
this system is still a very active area of research, in mathematics as well as in engineering and physics,
because it describes well the motion of incompressible fluids for a wide range of Reynolds numbers.
In dimension two, the standard velocity formulation is equivalent to the vorticity formulation which
reads

( Oywn +un - Vwy =0, in [0,7] X Fn,
divuy =0, curluy = wy, in [0,7] x Fn,
un -nlpry, =0, lim uy(-,2) =0, on [0,T],
|z|—o0 (1.7)
/ uy -7ds =0, on [0,T], forall £=1,...,N,
oIc
\ WN(O, ) = Wo, in Fy.

One of the main feature of is that it reduces to a transport equation for the vorticity by the
divergence free velocity up, where uy is computed from wpy through a div-curl problem. The global
well-posedeness of this equation — in such exterior domains and C!(R?) initial data — is established
from a long time by Kikuchi [15] (see the textbook [2I] for more references).

The div-curl problem can be recasted in terms of the stream function 1y which is then the unique
(up to a constant) solution of with f = wy. As in many papers on the 2D-Euler equations,
once the properties of the operator which gives uy in terms of wy are analyzed — which is exactly the
purpose of Theorem — one proves that (wy,uy) is close to the solution (we,u.) of the following
modified Euler system:

Oywe + Ue - Vw, = 0, in [0, 7] x R,
divu, =0, curl((Io + kMi)ue) = we in [0,T] x R,
lim wc(,z) =0 on [0,77, (1.8)
|z|—o00
we (0, +) = wo, in R2,

where M\K is defined in terms of My = (m; ;)i j—=1,2 as follows:

5 —m m
My = 2 )
ma2 —m21

The homogenized system (|1.8) is also a transport equation for the vorticity w. by the divergence free
vector field u., but u. is now related to w. through a modified div-curl problem. This new system
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is reminiscent of (I.5)) with f = w.. Indeed, since u, is divergence-free, it reads again u, = V>, =
(—02%e, 019¢)T which implies that

curl((Io + kM) VEpe) = div((Iy + kM) Vibe).

Our main result concerning the Euler equations splits in two parts: a well-posedness result for (|1.8])
and a stability estimate between the solution to ([1.8]) and the solution to the initial Euler problem in
a perforated domain.

Theorem 1.3. Let wy € CL(R?) such that suppwy € R*\ Kpys and let § € (0, dist(suppwo, Kpyr))-
There exists g > 0 such that the following holds true:
(1) For any k € FV(eo, Kpn) there exists Ty, € (0, +0oc] and a unique w. € C([0, T},] x R?) solution
to such that dist(supp wc( ), Kpnr) =6 for any t € [0, Ty].
(2) For any T < Ty, n € (0,1), p € (1,2), there exists C(T,n,p) such that, for any Fn verifying
, the unique solution of with initial datum wy satisfies for all t € [0,T):

p(1—n)

anN 3— 1
HwN—wam»mm@ascawman) - Wﬁﬁmw4wM—Mmqﬂwywmmﬂwj-

Moreover, for any bounded open set O € R?\ Kpyy, there exists C(O,T,n,p) > 0 such that for
allt €10,7T):

a 3— p(1—n) 1
WW—%w»mwm<cmWmﬂQ) + o~ MW?wq+M—W%WWﬁWW%W4-

Of course, if T} < 400, we should choose T' = T} in the second statement. During the proof, we
compute also a stability estimate between the flow maps which correspond respectively to u. and uy.
To avoid additional definitions, we do not include this result in the statement of our main theorem. We
mention here that this latter stability result follows mainly from the bootstrap argument developed by
the second author together with Arsénio and Dormy [4]. It is based on lipschitz estimates for u, — un.
Such a W2 estimate for the stream functions are very far from the content of Theorem This
reason motivates that we only get estimates on [0, 7], i.e. before that the homogenized vorticity reaches
supp k. Even if there is no vorticity in the vicinity of the porous medium, we recall that the velocity u.
is highly affected by k through a non-local operator. In particular, Remark can be adapted here to
state that the solution of the Euler equations in the whole plane is a worse approximation of (wy, uy)
than (we, uc).

We note that the above result is by nature slightly different from the usual results on the asymptotic
behavior in perforated domains (as in the articles listed in the introduction and the references therein).
Often, the justification that a homogenization problem is a good approximation reads as a weak or
strong compactness theorem as N — oo, and in general, H oc estimates (as for I'; i) is enough to
have a global compactness result without assumption on the support of the vorticity. Unfortunately,
we cannot ensure that every right-hand side terms in Theorems and tends to zero for p — k.
Here, our justification reads as the identification of the leading term with respect to powers of €.
Nevertheless, in classical literature, some weak topologies do not allow to give a precise estimate of the
error between w,. and wy, hence we think that such a statement is interesting at the practical point of
view.

The remainder of this paper is composed of two parts. The following section deals with the elliptic
estimates, namely proves Theorem The application to the 2D-Euler equations is performed in
Section [Bl

Notations. Below, we use standard notations for lebesgue/sobolev spaces. We also denote by
HY(R?) := {4 € L} (R?) s.t. Vo € L*(R?)}

and W1P(R?) the homogeneous sobolev spaces.
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2. ELLIPTIC ESTIMATE

In the whole section, Ry > 0, My > 0, g9 > 0 and Kpys € R? are fixed. We fix also a homogenized
volume fraction k € FV(eg, Kppr) and a porous medium Fy verifying . We look for the
restrictions on g such that Theorem [I.1] holds true. To this end we fix again a source term f so that
Supp(f) € B(0,Rf) N Fn and || f|jze= < My. We emphasize that, in this section, all constants can
depend implicitly on Kpyr and KC, namely C(q, g0, Ry) = C(q,c0, Ry, Kpu, K).

We split the proof of Theorem [I.1] into three parts. In the first part, we focus on the problem in
the perforated domain . We recall existence/uniqueness properties for this problem and provide
an approximation of the solution via the method of reflections. In the second part, we focus on the
homogenized problem . We again consider the well-posedness issue for this problem and provide
an expansion of the solution with respect to the homogenized volume fraction k. In the last part, we
compare the solutions to and to (|1.5)) through the provided approximations.

Before going into the core of the section, we recall basics on the resolution of the Laplace problem
in the absence of holes (1.6]). Since f has compact support, the unique (up to a constant) C'! solution
g is given by the integral formula:

1

nle) = 5= [ Inlle =7 . (2.)

From this explicit formula, it is easy to derive the following standard estimatesﬂ

e ) is harmonic in the exterior of B(0, Ry) and behaves at infinity as follows

ff ff x Ly
bo(z) = L 1n |z| + o(| ‘) Vdo(e) = 51 O(W) : (2.2)
e V1) is uniformly bounded:
1 1/2 1/2
Vin(o) = 5 [ =L i)y IVl < I 7132 e (23)

with C independent of f ;
e V1) is continuous and almost lipschitz:

[Vipo(z) = Vbo(y)| < CUIf Il re) + [1f [ o 2))h(|z = yl),  h(r) = rmax(—Inr, 1), (2.4)
with C' independent of f.

2.1. Approximation of ¥y via the method of reflections. We start by recalling the existence
theory for . At first, we note that the boundary conditions on 0Fy impose that ¥y is constant
on each connected component of dFy. Consequently, we may rewrite as: there exist constants
(w}"vvz)gzl’“_,N such that:

gy =fin Fy, T V() =0, gn = v, on 0K, / By ds =0 for all . (2.5)
z|—o0 0K

Existence and uniqueness (up to a constant) of a C'* solution 1y follows from the arguments of [15]
Section 1] (see also [I5] (2.2)]). By standard ellipticity arguments — and because 9K € C1® with o > 0

~ we note that this solution satisfies ¥y € W2 (FN) N CH(FN). As ¢y is harmonic in the exterior

loc

of B(0,Rs) UKpy, it is snnpleﬂ to obtain that ¢ behaves at infinity like 1)g:

by() = fflnrm|+0(| L), Vo) = ]z +0( ). (2.6)

m |z?

LWe refer for instance to [22] App. 2.3].
2Indeed7 the maps z = x1 + ix2 — 01N — 1029 N is an holomorphic function which admits a Laurent eXpanswn at
infinity, where we compute that the leading term is ﬁ(faB(o oy VN -t faB(o y VON - nt) = (for any

27rz .FN
r > Ry).
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up to fix that ¥y (x) — % In|z| — 0 at infinity (we recall that ¢y is defined up to constant). It is
then obvious that

YN — o € LP(Fn), Vp > 2; V(YN —1bo) € LU Fn), Vg > 1.

We define now the auxiliary fields (the so-called reflections) which are summed to provide the
approximation of . For this, let first note that the one-obstacle version of with a linear forcing
x +— Az (obtained by linearizing the boundary condition coming from the lifting term 1)) on the
boundary reads:

AY=0in R*\ K, (z) = Az +* on 0K, ‘ 1|im Y(x) = 0. (2.7)
T|—00
Similarly, to (2.6 we note that the unique solution to
AY(z) =0 in R?\ K, | l‘im Vi(x) =0, ¢(z) = A-z on IK, (2.8)
T|—00

enjoys the asymptotic expansion
(falc I ds)
27

Setting ¢* = —cstt and ¢ = ¢ + ¥, (2.8) with the assumption falc b ds = 0 is equivalent to
(2.7)where ¥* is uniquely determined. In order to get rid of the constant ¢* we introduce the following
definition:

(r) =

In|z| 4 cstt+ O <1> . (2.9)

|z

Definition 2.1. We say that the domain K is well-centered if, whatever the value of A € R? there
exists a unique solution to

AV'[A](z) =0 in R?\ K, | 1‘131 VAl(z) =0, V'[A](z) = A-z on OK. (2.10)

Remark 2.2. A disk K = B(0, 1) is well centered and we also have an explicit formula for V[A]:
_A-x
P

We prove in the following lemma that, up to shift a little the domain I, we can assume that K is
well-centered and that V![A] behaves at infinity as in the case of the disk:

VAl(z) in R?\ B(0,1).

Lemma 2.3. Let K be a connected and simply-connected compact set of R? whose boundary 0K is a
CY Jordan curve (with o > 1). There exists a unique cxc in the convex hull of K such that, for any

A € R?, there exists a unique C* solution to (2.10)) with K=K- cic. Moreover, there exists a matriz
My € My(R) and bounded vector fields (hy)gen on R?\ K which depend only on the shape of K such
that we have for all z € R?\ (K U B(0,1)):
MicA) -

cd) -z he(@)

ol |
‘ZL’|2 |1”2+k

DRV A](z)

for any k € N.

Proof. Let A € R? fixed. Setting ¢(z) = V[A](z — cx), we look for a condition on cx such that the
following problem is well-posed

Ag(z) =0in R\ K, lim ¢(z) =0, ¢(z) = A- (z — cx) on OK.
|z|—o00
Defining ) = ¢ — (A (z — cx))x(z) with x a convenient cutoff function, it is clear from the Dirichlet
Laplace problem in exterior domains that there exists (for any cx) a unique C' solution such that

A¢(x) =0in R?*\ K, | 1|im Vo(x) =0, ¢(x) = A-(x —cx) on OK, Onpds =0,
and we provide now an explicit formula in terms of Green’s function, from where we will find cx and
the asymptotic behavior.
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As explained above (see(2.9)), the condition [, 9p¢ds = 0 implies that (for any cx) we have the
following expansion at infinity

v¢(x):o(|1‘2) and  ¢(z) = O(1).

Identifying R? = C, by the Riemann mapping theorem, we consider the unique 7~ biholomorphism
from R2\ K to R?\ B(0,1) which verifies T(c0) = oo and T’(c0) € R}, which reads as

T(2) = Bz +g(z)
for f € RS and g a bounded holomorphic function. It is then well known that we can express the
Dirichlet Green’s function in terms of 7T

1 T (y) = T(=)]
G(z,y) = = In ,
2 |T(y) — T(@)*|T(2)] 15\2
We refer for instance to [I4] where such a formula was used in the context of the Euler system. In
particular, we note that for x € R?\ K fixed, we have the following behavior when y — oo

T(y) —T(x) T(y)—T(z)" 1
G(z,y) =O(1) and V,G(z,y) = DTT(y)(|T(y) “ TP [T = T(x)*|2) - O<W>

Denoting the outer normal of R? \ K by n and thanks to the decay properties of G' and ¢, this
function G allows us to derive the following representation formula for ¢:

o) = /8 (V,G(9) (@) (A- (s = o) do(y)
_4 M(y_CK)KDTT(y)( T) - T T -Te)’ >>,<_ DTT(y)T(y)‘)] a0

where £ =

2 T(w) =T @) |T(y) = T() DT (y)T (y)

__A 1-T(@) Ty) _1=T@) T\ ]
oo /mc(y N )= Twk ~ 7w - TarE) VDT 0 dow

where we have used several times that 7(y) € 0B(0,1) and that DT is under the form

a b
—b a
(Cauchy-Riemann equations). Now we use that 7 (x) = fx + O(1) and again that 7 (y) € 0B(0,1) to
get

¢(3:):—£' (y—cic)(—l—2 ’7:;|(2y) (| |2>>\/(Wda

2 oK

-4 ( /8 meda(y) e / V/det DT (y) do(y))

A
+ 2 - W) /3t DT () do(y) + A- o)
™ Jox B | | |z|
It is then obvious that ¢(x) — 0 at infinity if and only if

o — Joxc y/det DT (y) do(y)
Joxe v/ det DT (y) do(y)

which belongs to the convex hull of K.

Setting
M;/Czl(/ (yj — cxj)Ti(y)/det DT (y) do(y ) '
oK Y]

pr :

gives the expansion of V'[A], because it is clear that

VNA](z) = ¢(x + k) = (MK,?JF. ii;cn) +4- O(\ 1,2) - (]\/[I\C;!l?)m +A.O(\$1’2>

at infinity whereas ho(z) is bounded in any bounded subset of R2\ (K U B(0,1)).
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As for (2.6]), we notice that the maps z = x1 +izg — 91 V[A]—i0,V![A] admits a Laurent expansion
at infinity, which is compatible with the previous expansion only if

8¢<V1[A](x) - M) = A-01)|z]*) fori=1,2.
|z ?
By the Laurent series, we directly conclude that the decomposition DF (Vl[A] (x) — W) =
x

A-O(1/|z|***) holds true for any k > 1.

Remark 2.4. In the case of a circular hole centered at the origin K = B(0, 1), we notice that 7 = Id
gives cx = 0 and Mg = Iy, which corresponds to Remark

From now on, we assume further that K is well-centered, namely

/wcy\/det DT (y)do(y) = 0.

We emphasize that this assumption is harmless for the computations below. Indeed, the content of
Lemma [2.3] yields that this assumption amounts to shift the origin of the frame in which the set K is
defined. However, the necessary shift maps the origin into a point inside the convex hull of K (and
thus in the square [—1, 1]? like K) while the distance between the (scaled) holes of the porous medium
(K¢)e=1,.. n is much larger than the hole width. Hence, changing the origin for the point that makes
the set I well-centered does not change our results on the method of reflections below. Consequently,
we avoid tildas over sets I from now on.

Given a > 0, aK is also well centered, so for any A € R?, there exists a unique solution V¢[A] to

AV Al(z) = 0 in R?\ (aK), lim V[A](x) =0, V*[A](z) = A -z on 9(aK), (2.11)

|z|—o0
which clearly verifies the scaling law
VeAl(z) = aV'[A](z/a). (2.12)

Let us note that the behavior of V[A](x) for |z| > d, i.e. when |z|/a > d/a > 1, is given by
Lemma 2.3}

VQ[A](SU) — g2 (M’CA) x +a2A . h()(l‘/(l) — g2 (MKA) " + <g
d

2
— A- 1).
e 2]? e ) 4-0)

From the behavior of VV'! at infinity, it is also clear that
lim OV A](x)ds =0
R—o00 B(O,R)
which means by harmonicity that

/ 0,V A](z) do = 0. (2.13)
d(ak)

We provide now an approximation of the solution ¥y wvia the following iterative process i.e., the
so-called "method of reflections". At first, we consider the Laplace solution in the absence of holes

2):
PO = . (2.14)
As f vanishes inside the holes, we get by Stokes theorem that |, oice Ontdn ds = 0 for all £. Therefore
4

) verifies every condition of except that it is not constant on OKj:
»© (x) = »© (x¢) + Vipo(zy) - (x — x¢) + 0o(x — x¢) on OKj.
Hence, we use the reflections introduced in to correct the main error:
AN = —wyg(ay), £=1,...,N, (2.15)
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P =@ 4 6O with ¢ Z VAN (@ — 2o).

(=1

By (2.13) and by harmonicity of V*, we note that W) verifies again every condition of (1.4) except
that it is still not constant on 9K§, but the non constant part will be smaller due to the decay property

of V* (see Lemma [2.3)):

YW (@) = Yo(xy) + Z Va[Ag\l)](ac —x)\) +o(z—x¢) on IK}
A£L

=M (zy) (ZVV“ J(zp — l’)\)) (x —z¢) + o(x —x¢) on 0K7.
ALL

We iterate this procedure: for any n € N assuming the approximate solution ™ to be constructed,
we define:

AP = STV A (@ - 2y), £=1,..., N, (2.16)
NAL
N
w(n+1 w(n) + (ZS (n+1) . with (z)(nJrl) — Zva[AgH_l)](x _ $£)7 (2_17)

which satisfies

P () = 0 (20) + 3 VAT (@ —2) + o(w —20)  on OKY
AAL
— D (z) + (Z vV eAT ) (2, — xk)) (x — xg) + o(x — x27) on IKL.
AL

For technical purpose, we associate to the (Aén)) ¢=1,...~n the following vector-field:

N
n 4 n
™ (z) = EZAEZ L p(epas2) (@), (2.18)
/=1

where 1p(y, 4/2)(7) is the indicator function of B(z¢,d/2)(x). As the disks are disjoint, we have:

n _ld n
P e Z A Hp (2.19)
p—

for arbitrary finite p.

The main purpose of this section is to prove that this method of reflections converges and that it
yields a good approximation of 1. To this end, we control at first the sequence of vectors (Aén))ézl,._,7 N

Lemma 2.5. Assume that 0 < g9 < 1/2 and q € (1,00). There exists a constant Cyey depending only
on q for which the sequence ((Agn))g:17.,,’N)neN* as defined by (2.15)-(2.16) satisfies:

N 1/q 2(1-1) 142 N N1/
(X 1) " < ot () 4(1+1n(1_2§§))(;m§>\q)

Proof. Let n € N*. By definition (2.16]) of Agnﬂ), the explicit expansion of V! (see Lemma and
the scaling law (2.12), we have that:

n+1 7QQZ ( M,Cé%\z))x)

NAC

h LT\
a®>" Al 172 (2.20)
T=Tp—T) NAL |$g — l‘)\‘
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We begin by the last sum which can be easily bounded thanks to a pseudo discrete Young’s convo-
lution inequality inspired of [I1]:

1/q
Vg=1 <Z (Z \GwaA\)q) < max <S%PZ lagl, Sl;pz WA!) (Z \be\q)l/q
DY X ¢ ’

Indeed, we recall that hy is bounded, that B(xy,d/2) N B(xy,d/2) = 0 for all £ # X. So, the previous
inequality for by = Ag\") and agy = |y — 25|73 for £ # X (otherwise ag = 0) gives

1/q N
1 )1\ 1/
(?&ZME m?’)q) <aswd s (1)
By, AAL =1
N
3 —2 -3 (n)1q) 1/
s <Cd /B(O,d/2)c “ d$>(;Ae | )

a\3 N 1/q
c(g) (Z|A§">|‘I) . (2.21)
/=1

This estimate is enough for the second sum of (2.20)), but we note that the first term is more singular.
Indeed, a similar argument would yield:

1/q 9 N 1/q
(S (T2 <o(g)ima(yue)”

(=1 AL

N

which tends to infinity when a,d — 0 (even with a/d = ¢¢ fixed). So we provide a finer estimate by
rewriting the first term as a convolution in terms of o) (see (2.18)) in order to apply a Caldéron-
Zygmund inequality.

We note that  — (]\AI;CAE\H)) - (wp — x)/|z¢ — 2|? is harmonic in B(wy,d/2) for any A # ¢. Hence
according to the mean-value formula, we have

o2 MKA ) B 47612 / (M;CAg\n)) - x
ZV( ‘.’B|2 ) T=Tp—T) N md? /\Z# B(zx,d/2) V( ’$|2 >

AAL
Similarly, we remark that, for arbitrary y € B(xzy,d/2) with X\ # ¢, the mapping x — (M;CAén)) (x—
y)/|z — y|? is harmonic on B(x¢,a). This yields:

dy.

T=Typ—Y

M;CA ) / / MICA( ))
a2
v dzdy
gé:g ( ‘$|2 ) T=Tp—T) 71'2d2 gé:f m>\ d/2 xga |ﬂj‘|2 ) T=z—Y
7Y Mo d™)
— — ] Mg\ (y)dydz,
/B(:rg,a) /]R?\B(:ch,d/2 |z - 9\2) )
=1+ Jy. (2.22)

We denoted here D, for the gradient w.r.t. variable z and we have splitted eventually the integral as

follows:
_ T —
I = d—2/ / (Dz%) Mic®™ (y) dy dz,
Blwe,a) JR2\B(2,d/2) |z —
_ T —
Iy = d‘z/ / (Dz z y2) Mcd™ (y) dy d=
Blze,a) JR2\B(xs,d/2) |z =y

vy \NT —
—d? / / <D27y2> Mic®™ (y) dy dz.
Blwe,a) JR2\B(2,d/2) |z =y
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We deal with I, first. We notice that I, can be regarded as an integral of a convolution:

2 () (n) Y N Mo
Iy(x) =d F'"(z)dz where F\(z):= (Dy—2> M@\ (z —y)dy. (2.23)
B(zg,a) R2\ B(0,d/2) ly|
By Hélder inequality, we get
2

1Tl < d2(Vra) 7 | F™|| Lo Bag.a)):

where ¢’ is the conjugate exponent of ¢q. On the first hand, this entails:
N

29
DL < dH(Vra) | FO ] e (2.24)

(=1

On the other hand, we apply that F(™ is defined by an integral operator with kernel K(z,y) =
Ljo—yizds2D(x — y/|x — y|?). This kernel enjoys the Caldéron-Zygmund condition so that (recall ([2.19] -

1P parey < CO)I®™)]| Lare)
N
2 n 1
a)d (Y 1Ay, (2.25)
Combining (2.25)) with (2.24) yields that

- a)'/ a3y (n)|q) "/
(D 1l?) " < c@G)7 (Do) (2.26)

=1 =1

Now, we turn to deal with Jy. At first, we notice that for any ¢ =1,..., N and any z € B(xy,a),
B(z,d/2)AB(zy,d/2) C B(z,d/2+ a) \ B(z,d/2 — a)

(where A represents the symmetric difference between sets) which implies that

1 C
|| < / / ™) dydz = / G (2)dz
P Jara) /B 2400\ B -0 P Wl [z =yl & Jp(ep0)

where we denote

G (2) = !

o™ (y dy :/
‘ ( )‘ |z —yl? B(0,4+a)\B(0,4—a)

By Hélder inequality, we obtain as previously that:

/B(z, 5 44 a)\B(z, 77a)

N
2
ST < Cd a7 |G, o (2.28)
By the standard Young’s convolution inequality, we get by (2.19)):

n n 1
1G™ | Loy <™ Lor2) ”| |21 (0.4 4+a)\B(0,4—a) L1 ®2)

<clom(4E5e)a (DA )"
<ctn (152 ()"

The last inequality is guaranteed by a/d < g9 < 1/2. Combining with (2.28]) we obtain that

(Z’Jd ) ( )q n (14132) <§:\A§n)lq>l/q- (2.29)
(=1

Putting together (2.21)), (2.26) and (2.29)) in the two decompositions (2.20)) and ([2.22]) ends the proof
of the lemma. O
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Applying the previous lemma with ¢ = 2, we obtain that the method of reflections converges when
a/d < g9 < &ref where

1
=min | ————,¢ 2.30
Eref min (4C7~ef(2) 5 5r6f> ( )
with &,.¢ the unique solution in (0,1/2) of the equation:
- 1+ Qéref 1
ErefIn = .
TN = 281 ) T 4Ce5(2)
Indeed, with this choice of €., it is clear that eg < 1/2 and
N N N
/2 1 1/2 1\ 1/2
+1 1
(S1arR) ™ < (S 1are) < (1) (5 140)
(=1 (=1 /=1
Let us recall (2.3]) which entails that (see the beginning of this section for notations Ry, My):

(1)) _ 1/2
(onax A7 = max [Vibo(ze)] < Ol Rg)IIfIILoo]Rg) CRyMj. (2.31)

Even if in the previous argument, we used Lemma [2.5] only for ¢ = 2, this lemma will be also used in
Subsection [2.3] for ¢ > 2 arbitrary large.

The second step of the analysis is to obtain that the (w(”))neN yield good approximations of the
exact solution ¥py. The proof of this result is based on two ingredients: a variational property of
YN — w(”) and a control of the second order expansion of 1/}(") on the (0K})s=1,.. n. This is the content
of the next proposition.

Proposition 2.6. Ifey < min(g,ef, 1/4), there exists a constant Copp(Ry,€0) such that for any n > 3,
there holds:

16 — Ul ) < Capn(Ry.0) ((d) + a> M.

Proof. Recalling the definitions (2.5) of 1x and (2.17) of (™ (see also the definition (2.11)) of V®

which verifies (2.13))), we note that ¢ — ¢ belongs to H'(Fx) (see the behavior at infinity ([2.2)),
(2.6) and Lemma [2.3]) and satisfies

A — ) =0, in Fy,

(n) _ — (n) a —

(4 Yy =w', on OK¢, V{=1,....N, (2.52)
Op(p™ — ) do =0, VE=1,...,N,

oK

where, for any £ =1,...,N and z € HIC? we have defined

w™ (z) 1=t () + Z Z Ve A(j (x —m\) — PNy

7j=1)=1
=to( —I—Z ( +ZV“ :L‘—;U,\)) — N4
—1 AAL

The first argument of this proof is to notice that (™ — 4y minimizes the H'(Fy) on the set of
C' functions which satisfy this boundary condition up to a constant. Namely, for any wy € C}(Fy)
which verifies

dr(wy — w(")) =0 on dFy, (2.33)
we get by two integrations by parts and system (|2
L@ —uwlt = [ o —enudr= | 0@ — gy do
FnN OFN

— / (V™ — ) - Voo,
FN
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hence by the Cauchy—Schwarz inequality:

/ V(™ — ) < / V. (2.34)
FN Fn

Therefore, we create now a lifting (up to constants) wy of the boundary value w™ and we estimate
its H'(Fy) norm. First, we define a cutoff function x € C°(R?) such that

x=1in K+ B(0,1/2) and x=0inR?\ (K + B(0,1)).
Second, we set for any £ =1,..., N

Wy e(x) —I—Z( (x — +ZV“ a:—w,\))

j=1 A£L
and by Wy, the mean value of Wy on (Kf + B(0,a)) \ K. We finally define

3

— A L= 3315)
w(a) ;ww( 2) — oy x (),
which clearly verifies (2.33)). Therefore, by (2.34)), our proof reduces now to estimate the L? norm of
Vwy, which decomposes as follows:
N

I <2 3 omsto) - am w0 ()

\QC’XZ/

where we have used that x — x((z — x¢)/a) have disjoint supports. By a standard change of variable
y = (z — x¢)/a, a Poincaré-Wirtinger inequality on the domain (I + B(0,1)) \ K entails that
N

IVwn[IF2ry) < (2CxCrw +2) ) / Vi o()]? da.
=1 7 (K§+B(0,a)\K¢

T — T\ |2
L?(Fn) +2H;VMN£ )X( a )‘L2(.7:N)

[ () — W e|? dx+2Z/ Vi () * da
Ky

¢ +B(0,a))\K§ +B(0,a))\K¢

With the expression ([2.15]) of A(j) and ([2.16)), we compute

Vi o(z) =Vio(z Z( '+ Y IVeaY] (@ - a)

AAL
n—1
—Vio(w) = Vio(w) + 3 D (VVIAP (@ — 22) = V4D (w0 — 22 )
G=1 \£L
+ 3 VAl (@ - 2y),
AL
hence
Vw22 (ry) < 3Q2CCrw +2)(K1 + K + K{), (2.35)
where
N
K= / |V (x) — Vi/][)(xg)|2 dzr,
(Kg+B(0,a))\K2
-1 , 2
Z/ Z ZVV“[AE\J)](:JJ —xy) — VvV [A( )](:Ifg — )| d,
(K¢+B(0,a))\

J=1 X#£L

2
Z/ > vveali@ - ay)| de.
(K&+B(0,a))\ K&

NAL
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We begin by K. én) because the analysis is almost the same as in the proof of Lemma The explicit
expansion of V! (see Lemma and the scaling law (2.12)) give:

a (n M/CA ) ( (n) )
gvv (A1 —3) _QQ§V< |z — x)\[? ) 3§A m

For all x € Kf + B(0,a) and A # ¢, we use that |z — x| < 3a < 3d/4 < 3|z, — x)|/4 provided that
g0 < 1/4 to state that |z — z5| > |z¢ — )|/4, hence

hi(
a’ A 1 ‘ dz < Ca® ( >
Z/ (Kg+B(0,a)\K3 /\Z# Ao —33A|3 ; AZ# |z _513)\|3
where we have used that h; is bounded. Like for the second sum of ([2.20)), we state that the pseudo
discrete Young’s convolution inequality gives

hl Xr— :1:/\)

3 A”)
Z/ (K¢+B(0,a))\K¢ Z |z — z5[3

NAL

| ()
n)|2
Co5 D 1A
/=1

Concerning the other part of Kén), we notice that for any z € K + B(0,a) and X\ # ¢, y —

aQ(MKA&n)) - (z —y)/|r — y|? is harmonic in B(zy,d/2). Hence by applying mean-value formula, we
obtain that

) T—x a M A™)Y . (& —
2ZV< (McA) - ( A)) _ 4a? /B(“d/Q)V((MchA )-( y))dy

2 FEPNE nd oy

7TCL2 / T —y T —
= Dy——"2) M®™ (y)dy
d? Jr2\B(zy,d/2) ( |z — y|2) v)

with &) defined in (2.18). So we follow the proof of Lemma — and keep the conventions ([2.23))
and ([2.27) to define the functions F,, and G,, — to state that

M}CA )) (x — 1'/\) 2 B ~
v de < I+ J,
/(’C?"‘B(O,a))\lc ‘ gé; ( |ZL‘ _ l'/\|2 ) ‘ s< I+ J,

where, on the one hand, we write

&:2/
(Ka+B(0, a))\/ca

N ~ 27T at 271' at
ST I < T I F™2.(R?) < ZMW
/=1

and, on the other hand, we compute

™a

L<2/ (2GU(gam
(Ke+BOa)\Ks N d

N9 n 2na’ Lr2 3
;b ”WWHHM C$W1@4®>;‘

Putting together the previous estimates, we have proved that

K < (141 (igg))?g,Agm
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Applying Lemma and recalling our choice (2.30)) of €,.¢, we conclude by ([2.31)) that
2(n—1)

4 2 1+2
<o (1vm(352) S(m(15Y) 2l
K} 1 N(1+1 M2N
Cd2 +m 1— 2 Cres )d +m 1—2¢ FyMp
8 1+2 6 142 2n=o
a €0 Eref 2272
gcf<1 1 ( )) Cror(2)er (1 1 <7)) R2M2N
A FDerey (LI (5 = ]
8 1 2 6
gc(g) <1+1n (i;;)) R3M?, (2.36)

for any n > 3, where we have used that our assumptlon on Fy entails N < C(K pM)d_2.

Actually, we note that K é ") could be smaller if necessary because we could extract additional power
of (a/d) in the previous argument.

Concerning K7, we simply use the log-lipschitz estimate of Vi)y (2.4) to write for any = € (Kf +
B(0,a)) \ Kf
Vg () = Vo (20)| < C(1+RE)Myle — ol Infa — ]|  C(1+ R} M|z — e < C(1+ R}) Mypa®/,

hence

2 8
Ki < C(1+ B})PMFa*2aN < C(1+ R)*M}a** % < C(1+ R3*MF (o + (%) ). @3

Using Lemma with £ = 2 and the scaling law (2.12)), we consider now Kén): we have for any
xz € (K + B(0,a)) \ K}

n—1 ] )
‘ZZVV“[A(;)](:U—M) — VA (2 — ’ ZZgammax IV2VeAL ) (z — )|

=1 A£L Py, +B(0,a)
n—1 (J
3 A5
; g;g lze — ﬂfx\?’

where we have again used that |x — 25| > |z, — x)|/4 for all x € Kf + B(0,a) and X # ¢ (provided
that €9 < 1/4). As in the beginning of the proof of Lemma we apply the pseudo discrete Young’s

convolution inequality for by = Zn__l |A(n)| and agy = |zy — x| 73 for £ # \ (otherwise az = 0) to get
5 A

1/2 N o nl o0l
(K2 < Cat <Z<Z |m x/\|3|>> <0a4sngW(Z(Z\A&])I>>/

(=1 XAl =1

comfert [ b S (S0 <) S g (S e

where we have used Lemma together Wlth the definition (2.30)) of €,.f. Therefore, we conclude by
([2.31)) and that N < C(Kpp)d—2 that

(n) a\® 52
Ky < o(5) Rid. (2.38)

We are now able to conclude this proof: using the variational property ([2.34)) with the decomposition
(2.35)), then the estimates ([2.36)-(2.38) gives for all n > 3 and g < min(eyer, 1/4):

/fN V(™ —yy)P < C(l +R;)2(1 +ln (1 f §§2)>6M;§<a2 n (%)8)

where C' depends only on Kpjy; and K. O

We show now that the radius a of the holes is controlled by the distance in W ~1?(R?) between the
indicator function p of Fy (defined in (1.2])) and the limit volume fraction k.
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Lemma 2.7. Ifeg < 1/2 and p € (1,00), there exists a constant C(p,eo) depending only on p and eg
such that

_pb
a < Oy}l — k7.

This lemma gives obviously the following corollary of Proposition [2.6]

Corollary 2.8. If ¢g < min(eycf,1/4), given p € (1,00), there exists a constant Cypp(Rys,p,€0) such
that for any n > 3, there holds:

19 = ¥l 2y < Canp(By,p:20) My <<d> * ‘“_kmﬁl”’(“@))'

Proof of Lemma[2.7. Let denote
1
6= —a.
260
We remark that, with assumption (Ax,,, ), the open set B(x¢, §) does not intersect the other B(z), )

(A #4) if g < 1/2. We introduce then x a plateau-function such that

10,5 — 1B,

Ioe S X< 1pegs — with  [Vx| <Oy

5 ?
since § > a. Given a center of hole z; (¢ = 1,..., N) we have, on the one hand (since k € FV(eo, Kpar)):
b=k =) = [ (Lpale) - b))l - 20 ds
B(xy,0)
3ma?
> 027 — ||k|[ e 827 > a27r<1 - 53(1/(250))2) -
On the other hand, we also have the bound:
5o
(= ko xC = 2D < llw = Ellw-ro@e) I xTwrw wey < CP0 = Ellw-1o@2) =
21
< C(pseo)lln = kllw-1p@e)a?
which ends the proof. O

2.2. Construction of . and first order expansion. For any M € M3(R), we continue this
section with an existence theory for the elliptic problem ([1.5)) that we recall here:

div[(Ta + kMi)Vipe] = f  in R?,
lim Vi (z) = 0.
|x|—o00
We recall that f € L>(R?) and k € FV(eo, Kpy) have compact supports. We state first the well-
posedness of (2.39) and give a first estimate on v, and on 9. — 1y (recalling that 19 = A~1f is defined
in (1)),
Proposition 2.9. Let ¢ € (2,00). There exists a constant e.(q) > 0 depending on q and My such that,

if e0 < ec(q) there exists a unique (up to a constant) solution . € WHI(R?) to . Moreover, there
exists C(q, Ry) such that

HwCHWLQ(]R?) < C((L Rf)Mf and ch - 1/JOHWI,q(R2) < C(q, Rf)MfHkHLoo(R2)-

Proof. Let f € L>°(R?) with compact support and ¢ > 2. We prove this statement by a perturbative
method.

For this, we start by noting that A™! (as defined in (2.1)) is a bounded operator from LP(R?)
to W14(R?) where p = 2¢/(q + 2). Indeed, the operator VA~! is associated with the kernel y
y/(2r|y|?) € L?*°(R?), so for any g € LP(R?), the Hardy-Littlewood-Sobolev Theorem (see e.g. [29,
Theo. V.1| with o = 1) where % = % + § gives:

1A li0(zz) = IVA gl o2y < C(@)llglliome)- (2.40)

(2.39)
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This inequality holds for ¢ € (2,00), and p € (1,2). Moreover, by the Calderén-Zygmund inequality,
we also know the following continuity result:

[ dng”Wl,q(R% =A™V dng”Lq(RQ) < C(Q)||9||L4(R2)- (2.41)
Next, we remark that 1. is a solution to (2.39) if
A, = f—div(kEMy - Vibe).
We set:
Yeo =100 = A7'f,
and, for arbitrary n > 1:
wc,n = Ailf - ['wc,n—h
where
Ly := A7 div(kMc V).
By (2.40]), we state that .o belongs to Wl’q(RQ) and
2
e 0llyiraey < ClO)RYM;.
Next, we note that £ is a linear operator from W1H4(R?) to itself such that
1L lyirragrzy < C(@I[EMi V| La(re)
< C(g, Mio) k]| oo |Vl Laqmzy < C(a Mic)e (@) 1| [lyjrr.a g2y
where we used (2.41)) and k € FV (e(q), Kpy). By choosing (q) = 1/4/2C(q, Mx), we obtain that
(1en) is a Cauchy sequence in W14(R?) which converges to 1., solution of (2:39). This concludes
the existence of 1. for each fixed 2 < ¢ < 0o, and the uniqueness comes directly from the fact that

1£]] < 1/2.
By this Banach fixed point, we also have

H@bc - wOHWLq(R?) < Z chm—i-l - wcmHWl,q(}}@) < 2H¢c,1 - wC,OHWLq(R?) = 2H£¢OHW1,Q(R2)
n=0

hence
e — wollyirnaqze) < 2C(g. Mic) k]| C (@) R} P My
and
el amey < (1 +2C(q, M) k|l =) C(q) RY P M.
Therefore the proposition is proved. -

Remark 2.10. As a direct consequence to the previous proof is that

Yo 1= e = o — A7 div(EMic Vo)

satisfies

ch - JJCHWLq(]W) < Z ||¢C,n+1 - wC,nHWLq(R2) < 2H¢C,Q - wc,l Wha(R2) = 2”£(¢CJ - ¢0,0)“W1,q(R2)
n=1

hence
~ 2
e = Wellyiragee) < 2ILI2 100 lliragre) < 2C(0, Mi)?|[k|3 = C(g)RY M;.
This gives that 1;0 is the first order expansion of 1, w.r.t. the parameter k:
e = Pellyia@ey < Clg, Rp)My|[|] o (g2

for any €9 < e.(q).
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2.3. Stability estimate. In the above paragraph, we constructed a family W(n))neN of approxima-
tions of 9. It turns out that the error is not improved by taking n > 3. This is related to the fact
that we correct only the first-order expansion of (™ on 0K in the recursive process. So, we restrict
to index n = 3 in what follows and we denote 1) by 1.

In this part, we show that, if £ is small enough, the leading term of 1)y when N is large (meaning
that p is close to k) is given by 1), (defined in the previous subsection) with the definition My := 2Mj,
where My is defined in Lemma By Remark we can notice in the case of the unit disk that
My = 21s.

For this, we introduce the two following functions on R?:

N

¢mw:—§;/ (McVio(y)) - 5 dy, &= —divA~ (kM V).
2r|x — y|

¢—1 Y B(ze,a)
In particular, we remark that we have then 1[10 := 19 + ¢. The main result of this part is the following
proposition:
Proposition 2.11. Let p € (1,00) and n € (0,1) given. If ¢o < 1/4, for any compact subset O of R?,
there exists a constant C(O, Ry, p,€0,1) such that:

3—n p(1—n)

_ ~ a 1
[ = Dellz2(onry) < C(O, Ry, p, 0, m)My [(d) = Kl gy + = 1)

Proof. We fix p € (1,00) and O € R? for the whole proof. According to the definitions of 1y
and ¢, we notice that
On = e =W+ 6P+ —p=ri 4141,
where
T i=9N — @, T2 = qﬁ(l) —¢n and 73 := @ + ¢
We first notice that

(@) = [ () = 1) OV (0)
which, combined twice with (2.3 and the fact that & — u is supported in Kpys, gives
1/2 1/2 1/2 51/2 4 71/2
71l vy < Cll(k = Va0l 21k = ) Vo2 < ClI(k = )X Vol ° Ry My
where x € C2°(R?) such that x = 1 on Kpys. Hence, we have

1/2 12 12 1/2
Irllzoe ey < Cllk =l sy XV 043 oy B M < oo x Ry = il ez M

Wdy, VZ'GRQ,

where we have again used . 2.3)) together with the Calderén-Zygmund inequality (in order to state that
|1 D% || 10 (R2) S CONNfl (Rg)). This ends the estimate for r;:

1/2
Irillzionry) < 1O2C(, Kpat, Re)lE = 1l s gan My (242
To compute |[ra||2(onzy) We split:
N
2 2 2
Ir2lE2ionzy) < I72lE2o0y Banzay T 2 7201225 20))- (2.43)
=1

For the first term, we notice from the expansion of V! (see Lemma [2.3) and the scaling law (2.12)),
there holds, for x € O\ | B(zy, 2a),

N

(o) = [ (eVan)ats) - == dy = YV (Ve )

—_ ]2
2|2 — y| —

:/R2 (MicVbo(y)) mly) - ﬁdy
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N r —
o (M Vipo(xr) - (x —w0) | 3 ho(*5*)
LT e TR

As often in this section, we use the harmonicity of the function y + (z —y)/|z — y|> on B(x,a) since
dist(z, {x1,...,2N}) > 2a in this first case. This yields that, for x € R?\ | B(zy, 2a) :

(MicNVo(zg)) - (x —
Z /xla) MicVpo(z0)) - ( y)dy

|z —y?

(@) = [ (VT 0)nt) - 51 dy

_Z 3V7/) (w¢) ho(% W)

- x?

h()(a:—aa:g )

N
Z / vy ME(T¥0(0) = Vo)) - 7l dy = 32Vl - (72

Let denote by 7} (x) and rj (m) respectively the two terms on the right-hand side of this last equality.
By (2.4), we get for any y € B(xy,a):
|Vebo(y) — Vibo(ze)| < C(1 + R})Mjallnal < C(1 + R})Mya®*,

hence

172" | oo (0\U B2 209) <C(Rf)Mfa3/4/ Mdy
r2 |2 — 9|

1/2) 1/2
C(Rp)Mya® || 2l 2
C(Rp)Msa®/*(a>N)'/2,
where we have used a slightly stronger version of (2.3]) (see [22, App. 2.3]). Using again that N <
C(Kpp)d—2, we finally obtain

75" (| oo (O\U B(w,20)) < C(Kpar, Rp) My <a+ (%)4)

As for the remainder term rj in the expansion of ry, we use that hg is bounded — and that B(xy, a)N
B(z,a) = () for arbitrary £ € {1,..., N} (since x € R?\ | B(z,2a)) - to state that:

h Xr— Ji,g 1

Kpu\B(z,a) [z -y

<
<

N
IEZJV%@w-
=1

<C(0, Kpar, Rf)Mfa(| Inal + 1).

Considering that there exists C,, > 0 for which a|lna| < C,a'™" whatever the value of n € (0,1), we
finally get by Lemma [2.7] that:

a p(1—n)
Irall @\ BGanza) < O 20,0, Kpar, ROMy((5) 4 I = Kl (249
provided g < 1/4.

To bound r9 it remains to compute an upper bound for
N

Z \\7’2“%2(3(90[,2@)-

(=1
For this, given ¢ € {1,..., N} we write again ra(x) = 7“2”(1‘) + ry(x) with:

= [ (M) dy— Ve Tin(an))(e - o).

ML

27T|x yl2

i) = [ M) ()5 dy VIV )

27r|ac
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We control 7“?1 as the previous term r4". First, we remark that, on B(zs,2a) there holds:

T—x)
@) = o j; L (Me(P0) = Fntea)) - [ dy = Dt S
#L A AL
that we bound similarly as the previous r5*. This yields:
a\ 4 p(1—n)
[ri"(z)] < C(Kpn, Ryp) My <<d> + || — kHM}’fip(Rg)> V€ B(xy, 2a).

We note that this bound is not optimal since we merely used that the distance between two centers
x) is larger than a (while there is a distance larger than d). As for the second term, we have, for

x € B(xy,2a), by the scaling property :
[VeIVo(zo))(z — o)l < al Vo (o) [(IIV er] [z + [V ea][[z) < CK)RpMya

and
[ Vi) 5o dy) < Ry ) Mya,
B(zy,a) 27 ’.’IJ - y|
so that |rj(z)| < C(Ry, K)Mysa on B(xy,2a). Hence, recalling Lemma 2.7} we have finally:
N 2p(1—n) an 8
>l o < a0 (5)° (1= K1 + (5)°) (2.45)
Plugging (2.44) and (2.45)) into (2.43)) yields finally:
a (1+2n)
||r2||L2(OﬁfN) < C(O?panvgoalca KPMaRf)Mf<(d> + H/.L kHMf 1,p R2)> (246)

Now we turn to deal with r3. We split again:
N
H7°3||L2 (ONFn) ”7"3HL2 (O\U B(z¢,2a)) + Z HT3HL2 B(z¢,2a))"
(=1

Concerning the first term on the right-hand side, as for o, we use Lemma and (2.12)) to notice
that:

s N 3N o A p—
_ a _ o (MxA;”) - (z — ) 3 4(9) ho(*5*)
=2 VA le ) =0 ) T AT

j=2 (= j=2 1

—_

For the first term, we apply that dlst(x {xl, ..., ZN}) = 2a to bound:

A ]\L A(])]]_ a
Ir3(z |<Z() Z 2‘ ZC’C/ 2= 144 B(g,)(y)dy

|z —

<ZC(IC/ (Z\A (o0 (1)) - ey,
j=2

where Rp = diam(Kpp U O) (since z € O while y € Kpjs in the above integral). So by the Young’s
convolution inequality, we get

]1|y<Ro‘
|y

3 N ]
73]l L2(0\U B(we,20)) < C(’C)H L) Z H Z !Agj)l]lB(mz,a)(y)‘

L2(R2)

3
C(K, 0, Kpar) ZQN%%
j=2

S A9 a0 )
/=1

L1(R2)
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< C(K, 0, Kpur) (fl)g(%_;)@3 i (i AP 0)

Next, we use Lemma [2.5] to state that

> (310" <ctwan(§) P (L)

j=2 (=1
provided g9 < 1/2. So we conclude by (2.31)) and the fact that N < C(Kpy)d=2:

25-1) 2 ray201-1) 1
73]l 20\U B(zs,20)) < C(g;€0,K, O, KPM)<d> as (g) ! ReMy g

a\3-2
< C(g,e0,K,0, KPM)Rfo<8)

and by taking ¢ sufficiently large, we reach:

a\3-m
73]l L2(O\U B(we,20)) < C(O, €0, K, Kpar,n) Ry My (g) : (2.47)

Concerning the remaining term Zévzl ||T3|i%2(3(1‘g 24y, We proceed as for ro. On any B(zy,2a) we
have, since dist(z, {xx, A # £}) > d/2:

o) 2‘14(] : ) o)
|ra(@ oz al Ay Z‘ <CY a4 +a? Z m“/?’ > 1A
A=1

A£L j=2 A#

W

3 2 N 1/4
C(0,Kpm) ) | al J)‘+d3/2 <Z|A>\|4)
=2 A=1
Consequently:
3 N
Zi|r3i|L2 ey < CO Epan)a® S5 [ a?|471? + ( ZIAJ)\)

J=2¢

We apply then again Lemma ﬁ with ¢ = 2 and ¢ = 4 together with (2.3]) to obtain:

Z\|r3||L2 ooy < OO K et (o (5) 4 (5)'). (2.48)

Finally, combining (2 —-, we obtain, similarly as above:

a\ 3—
I7sllzaonry) < C(O, KPM,so,n,Rf>Mf<(d) + - ki|5;%p(R2)). (2.49)

Bringing together (2.42)-(2.46))-(2.49), the proposition is proved. O

2.4. End of proof of Theorem To finish the proof of Theorem we first assume that
€0 < min(1/4¢ Erefs 50(3))

so that Corollary Proposition and Proposition hold true. We decompose (up to an additive
constant) 1y into:

N — e = VN — N + YN — Ve + Pe — Ve
where we recall that 1y = ¥(3) (with the notation of Proposition and ¢, = 1o— A~ div(EMi V).
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First according to Corollary 2.8 we have that

_ a
lhén = 9l i ey < Cnnl(Byp,20) M (( oY e~ M R2)>
By Remark we have for any O € R?:
ch wcHHl (ONFn) ( )ch: zEcle,s R2 < C(Ova)MfHkH%oo R2)*
(R2) (R2)

Hence we obtain that I'y y := ¢y — N + 1/Jc — 1 is harmonic in R? \ Kpj; and satisfies
Hvrl,NHL?(OF‘I]:N) < 0(507p707Rf7KPM7,C)Mf |:<d> + ||M k||11/){j_21p R2) + ||k||%°°(R2):| :

On the other hand, by Proposition we have that I'y  := 1,[_}]\/'*1;0 is again harmonic in R?\ Kpjy
and satisfies:

T2~ L2(onFy) < Cle0,p,n, O, Ry, Kpyr, K) My

a\3—n P(1+2n) 1
% |:(d) + ||ILL k”V[; 1,p R2 + ”lu’ - k”é{/—l,p(Rg)] .
The theorem is finally proved.

3. THE HOMOGENIZED EULER EQUATIONS

We split this section in two parts. The first subsection concerns the well-posedness result for the
homogenized Euler equations ([1.8]). The second subsection concerns the proof of the second statement

of Theorem In this section, the subscript ¢ on functional set, as CL(U) or wep (U), means that
the functions have a compact support in U.

3.1. Well-posedness of the modified Euler equations. We begin this section by recalling the
main result of Proposition : for any €9 < e.(4), k € FV(e0, Kpy) and f € LL(R?), we have a
unique (up to a constant) solution 1. € WH*(R?) of (1.5).

Of course, to prove the well-posedness of strong solution to (1.8]), we need more regularity concerning
Ue 1= VJ-wc. A simple case where we have the standard estimates for A1 is the following.

Lemma 3.1. Let assume that K = B(0,1), k € C?(R?) and f € LX(R?). Then Vi), is continuous
and

Vel oo ey < CR)f |l Lrnzee ®2)s
with C(k) > 0 depending only on k (independent of f).
Moreover if f € W2°(R2), then Vi), belongs to C*(R?) and

192l e a2y < COk Bp) (14 1 e ey In(2 + [ fllpienoeqes) + 1V o)) )
where C(k, Ry) depends only on k and Ry, with Ry > 0 large enough such that supp f C B(0, Ry).

Proof. When K is a disk, . solves div((1 + 2k)V1).) = f. This reads in two different ways : either we
write

f—2Vk-Vibo -

A — =. .
Pe 1+ 2k /

or we write:
Ye= AT f — Lap. with Ly = A7Hdiv(EVY)).
This second form is the subject of Proposition We obtain there that (with ¢ =4, p =4/3)
Vel e < 201 L40]lyia + [[Vdollza < Clec(@))IVibollpa < Cllf ([ as < Cllf [ Linpee re)-

As Vk is compactly supported in Kpys, we note that f belongs to L' N L*(R?). This is enough to
state that Vi), is continuous and

Vel oo 2y < Ol fllinzaz) < COR)IfIlprnnes z2)-
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In particular, this implies that || f|ze < C(k)||f]l11n Loo(r?)- By Calderén-Zygmund inequality, we
notice that Vip. € WHA(R2). If f € W™ (R2), we get

IV Fllarey < C(k,supp )V Fllzoe + £l n1nze ®2))-

Again by Calderén-Zygmund inequality, we state that Vi), belongs to W24, in particular V2, is
continuous and

IV 4ell oo r2y < Ok, supp £)(IV fllzoe + [ fl|1nzoo (g2))-
This entails f € Wh> and

IV F e 2y < C (ks supp IV Fllzoe + |1 fllinzoe z2))-

We end the proof by applying the standard estimate for the laplace operator (see for instance [4]
Lem. 7.2])

IVl ogez) < C (14 I Fllpan @) + 1l ey (1 + 1V Pl e2))-
U

As we will see later, this lemma is crucial to get global result. When the shape of the holes is not
a disk, then My # Iy and we cannot adapt easily the previous proof. The standard way is then to
observe that
A(l‘) = I + k(z) Mk
is uniformly elliptic for g small enough, hence the operator
L:=—divA(z)V

has the Gaussian property. This allows to define the semigroup and to prove that £7!
can be written in terms of Green kernel

velo) = [ | Gl o) d.

Moreover, G should have the Calderén-Zygmund property which should be enough to get the same esti-
mates as in Lemma (3.1} For such an analysis, we refer to the monograph of Auscher and Tchamitchian
[5].

However, as the main theorem holds true only for w,. in the exterior of the porous medium, it is
enough to get a well-posedness before the vorticity w,. reaches the support of k. Hence, instead to use
sophisticated arguments concerning differential operators in divergence form, the following lemma will
be enough for our purpose.

= 0+°° e L dt

Lemma 3.2. Let g9 < e.(4). For any 6 > 0, there exists C(6) > 0 dependent only on 6 such that the
following holds true. For all k € FV(eo, Kppr) and f € LE(R?), V. is continuous on

Fs = {a: e R, dist(z, Kpy) > 5}

and
[Vellpoe (75) < COfllLrnLos r2)-
Moreover, if f € WCI’OO(RQ), then V). belongs to C1(Fs) and

1920l ooy < CCO) (1 I lprnzoee) + 11l ey In(L+ [V F Dl gy) ).
Proof. As suppk C Kpys, we simply notice that
V=1 — o
is harmonic on Fj/9, hence by the mean-value theorem
||V1/~’||W1»°<>(f5) S CO)IVYpe = Vihollpaz; ) < CO)Ifll 1o r2)-

Indeed, it was noted in the proof of Lemma that the proof of Proposition gives ||Vb.|] LA®?) <
CHfHLlﬂLOO(RQ)7 provided eg < .(4).
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Therefore, the conclusion of this lemma follows directly from the standard estimates of 1)y = A~!f.
O

We are now in position to prove the well-posedness of . We fix an initial data wy € CL(R?\ K pyy).
For any 6 > 0, we introduce now the subspace C,, s C C}([0,t5] x R?) as follows: a vortex density
w € CX([0,t5] x R?) belongs to C,, s if and only if

o |lwllz1m2) = llwoll L1 r2) and [|w|| foo (m2) = |lwol| oo (r2), for every t € [0, 5],

e w(0,2) = wo(x), for every x € R?,

e suppw(t,-) C Fs, for every t € [0, ts].
Of course, we have to consider ¢ < dist(suppwy, Kpar). The subspace C,,, s inherits its topology from
the metric of C} ([0,¢5] x R?).

For any function w € C, s, we conclude from Lemma that the velocity u := V4. [w] associated
to w is uniformly bounded in Fs by C'(k,d)||wo||r1nzec. Therefore, any trajectory starting from supp wo
along the flow associated to V44 [w] stays in Fs at least until

ty e dist(supp wo, Kpar) — 6
C(k, )llwoll L1z

The main idea is to prove the well-poseness result on [0, ¢5], following the usual scheme.

3.1.1. Construction of approzimating sequence. First, we build an approximating sequence (wp)nen
using a standard iteration procedure based on the wellposedness of the linear transport equation.

The first term is simply given by the constant function wo(t,z) = wo(z), for all (¢t,z) € [0,t5] x R.
Then, for each w, € C,, s, the following term w,11 € C,, s is defined as the unique solution to the
linear transport equation

Orwn+1 + Up - Vwpyr =0,
{ wn1(t = 0) = wo,

where the velocity flow wu,, is given by

U, = VEip.  where  div|[(Iy + kM) Vibe] = wy.

Indeed, as u,, is lipschitz on Fg, for any = € supp wp there exists a unique characteristic curve X, (-, x) €
C1([0,t1]; Fs), i.e. the curve solving the differential equation
dX, (s, x)
ds

In view of the definition of t5, we can choose t; = ts5. For any fixed t € [0, ¢5], the mapping x — X, (¢, x)
is a C! diffeomorphism from suppwg onto its image, preserving the Lebesgue measure. Its inverse
X, (t, )71 allows us to define the new vortex density as

W1t 2) = wo(Xn(t,-)"(x)), if z € X,(t,suppwo), (3.1)
wpt1(t,z) =0, otherwise, ’

= up(s, Xn(x,s)), X,(0,z)=ux.

which belongs to Cy, 5.

3.1.2. Uniform boundedness in C'. Second, we establish uniform C'-bounds on this approximating
sequence. To this end, we observe that the wy,’s also solve (in the sense of distributions) the following
equation, for i =1, 2:

OOz, Wn+1 + Up, - VOp,wpy1 = —0g,Up - Vwpi1.
It follows that, for any [a,b] C [0, ts],

b
Og;wn+1(b, Xp(b,2)) = Op,wn+1(a, Xp(a,x)) — / Og;Un, - Vwny1(s, Xn(s,x))ds,

where X, is the flow map associated to wu, (defined in the previous step). Then, by Gronwall’s lemma,
we obtain

Veon 11(b, X (b, 2))| < [Vewns1(a, Xn(a,))]ele [Vun(sXnsa)lds,
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b
[Ouon41 (b, X (b, 2))| < [Veon1(a, X (a, 2)) | [un (b, Xp (b, x)) el [Ven(oXn(o:Dl s,

for all z € suppwp. Further combining Lemma together with the fact that X, (¢,z) € Fs for any
(t,z) € [0, 5] x supp wp, we conclude that

lwnt1llct (fab)xr2)
Llwol| oo (r2) + C(k, 8) Vw1 (a, )l Loo(m2) (1 + llwoll 1AL (r2))

o (b=0)C(k,8) (1400l 1100 2y Hloll oo g2y MO+ Vel o 10,61 x52)))
hence

lwnr1llor (fapyxrz) < Co + Coll Vent1(a, )|l oo ey (1 + lwnllor (o xrz) 00,

where Cp > 0 may only depend on ||wo| f1nze(r2), k, 6 but is independent of wy,, wyi1 and [a, b].
Setting (b — a) sufficiently small, for instance,

Co(b—a) < (3.2)

l\.’)\»—l

yields

1 1
leont1llo (o pyxrzy < 5+ Co+ 7HVWn+1( Mo @2y + 5 lwnllor(apxr2),
®2) "9
whence, for each k =0,...,n,

1 c? 1
lwn+1llcr (a6 xR2) <<§ + Co + 70 sup IV wp (@, |7 oo 2 > (ZQ J) it [Wn—kllor () xee)
p/

1
<1+2C +Cf sup IVewp (@, ) Foo 2y + gt lwollor ).
p/

Since the initial data wg belongs to C''(R?), the constant Cy only depends on fixed parameters and
the bound (3.2) on the maximal length of [a,b] only involves Cp, we deduce that we may propagate
the preceding C''-bound on [a, b] to the whole interval [0,#5]. This yields a uniform bound

sup [|wn | o1 (0,65 xR2) < 00- (3.3)

n=0

3.1.3. Conwvergence properties. Next, we show that (wy,)nen is actually a Cauchy sequence in C°, which
allows us to pass to the limit in the iteration scheme and obtain a solution of in the sense of
distributions.

To this end, note that

8t(Wn—}-l - wn) + up - v(Wn—i-l - Wn) = (un—l - un) : vwny

8if(Wn—&-l - wn) + Up—1 - v(Wn—i-l - Wn) = (un—l - un) - Vwn1,

whence, for any [a, b] C [0, ts],
b
(Wnt1 = wn ) (b, Xn(b, ) =(wnt1 — wn)(a, Xn(a, x)) +/ (Un—1 = un) - Vwn(s, Xn(s, 2)) ds,
a

b
(Wnt1 —wn) (b, Xpn—1(b, 2)) =(wnt1 —wp)(a, Xn-—1(a,z)) + / (Un—1 — Up) - Vwpt1(s, Xn-1(s,)) ds.

As the vector fields u,,’s are uniformly bounded in Fs, we know that suppwy,(t,-) C FsNB(0, R(J)) for
any t € [0,ts] for some R(§) (depending only on suppwo, k, § and |lwol|p1qze~), so Lemma states
that

[tn—1 = unl| oo (75) < C(K; ) lwn—1 = wnllpinzee ey < C(K, 0)[lwn—1 — wall oo (r2)-
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This implies, utilizing (3.3)), for each k =0,...,n — 1, that

|wn+1 — wall Lo (ja,p)xR2) <[(Wnt1 — wn) (@, )| we) + C1(b — a)|lwn — wn—1|| Lo ((a,5)xR2)

<D (Cib = @) [(wnr1-j — wnj)(a, )| oo )

-

Il
o

J
+ (C1(b = )" Mwn—k — Wn1—kll Lo ([ab xB2) (3.4)

|
—

n

<2 (Gib— ) | (@nt1-j = wn—j)(a; )| L (m2)

i
o

+ (C1(b = a))"[|wr — woll poo ([a,b)xR2) s
for some independent constant C; > 0. As before, we set (b — a) sufficiently small so that, say,

1
Cl(b - CL) < 5

In particular, since the w;,’s all have the same initial data wgy, we find that

lwnt1 — wnllLoo(j0,p—a)xr2) < (C1(b —a))™ lw1 — woll oo ([0,6—a] xR2)

1
< FHWOHLW(RQ)-

Therefore, utilizing the elementary identity

S01-C1t)

§=0
for each n, k € N, we obtain
n+k n
oni = nll o ers-apy <2 (" 1 ) (€10 = ) ol
I (n+k
<t (1) Dol
whence
C
|wnt1 = wnllpoo(j0,45]xR2) < 2 for all n > 0,
Cl
me — wnHLoo([O’thRQ) < 2@, forallm >n >0,
2

for some independent constants C,C’ > 0.

It follows that (wy)n>0 is a Cauchy sequence in CY([0,t5] x R?) and, therefore, there exists w, €
C([0,t5] x R?) such that

Wwn — we  in L2([0,t5] x R?),

Up —> ue in L([0, ts5] x Fs),

where u, is defined by V+4).[w] and we have used Lemma to derive the convergence of u, from
that of w, (it is clear that w.(t,-) is supported in Fs5 N B(0, R(J))). It is then readily seen that w,.
solves (|1.8)) in the sense of distributions.

(3.5)

3.1.4. Regularity of solution and conclusion of proof. In order to complete the proof of wellposedness
in C1([0,5]), there only remains to show that w, is actually of class C'. Indeed, the uniqueness of
solutions will then easily ensue from an estimate similar to (3.4]).

For the moment, the uniform boundedness of (wy,)n>0 in C1([0,%5] x R?) only allows us to deduce
that w, is Lipschitz continuous (in ¢ and z). Lemmal[3.2]hence implies that Vu, exists and is continuous
in [0,ts] x Fn. It follows that the associated characteristic curve X (¢, x) solving

qs :uc(st)7
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for some given initial data X (0,7) = x € supp wo, belongs to C([0, 5] x supp wo; Fs) (see the definition
of ts). Moreover, one easily estimates, using (3.5)), that, for all ¢ € [0, t5] and = € supp wy,

| X (t,2) — X (t,2)| </0 [un (s, Xn(s,x)) — uc(s, X(s,x))|ds

</0 |un(s,Xn(s,x))—uc(s,Xn(s,x))ds—l—/o [uc(s, Xn(s,x)) — uc(s, X(s,z))|ds

<o(1) + C/o | Xn(s,z) — X(s,x)|ds,

which implies, through a straighforward application of Gronwall’s lemma, that X,, converges uniformly
n (t,z) € [0,t5] x suppwp towards X.

Next, as before, since the mapping x +— X (t,z) is a C'-diffeomorphism from suppwp onto its own
image, we consider its inverse X ~1(¢,2). By the uniform convergences of w, to w and X, to X, we

conclude from (3.1)) and ( . ) that
we(t, &) = wo(X~!(t,x)), if z € X(t,suppwy),
we(t,z) =0, otherwise,

which establishes that w. € CL([0,t5] x R?).

If dist(supp we(ts, ), F§ > 0), we iterate our construction until we get the well-posedeness on [0, T}]
where dist(supp we(Tk, ), F5) = 0 (or Tj, = +00).

This ends the proof of the first statement in Theorem provided gy < £,(4) (due to Lemma [3.2)).

Actually, we can even prove a strongest version: considering a sequence 4, — 0, we get the well-
posedeness on [0,7T}) such that dist(suppwe(t,-), Kpar) > 0 for any ¢ € [0,7%), where T, = +o00 or
dist(supp we(ts, ), Kpar) — 0 when ¢t — T < 400.

Remark 3.3. Using Lemma [3.1] instead to Lemma [3.2] we can simplify the previous proof when K is a
disk to state that there exists a unique global strong solution w,. € C*([0, +00) x R?) of (1.§)), allowing
the vorticity to pass through the porous medium.

3.2. Stability estimate. This subsection is dedicated to the proof of the second statement of Theo-
rem [1.3] So let us consider T € (0,T], n € (0,1), p € (1,2) given. If T}, < +oo, we can choose T’ = Tj.
We are looking for restrictions on ¢ such that the second statement holds true. For sure, we consider
go < g where &g is the quantity g9 appearing in Theorem

In the previous subsection, we note that the unique solution w. of is such that

[Jwe(t, )HLOO R2) HWOHLOO(]R?)a l|we(t, )|l 1 (R2) = lwoll 1 (R2)> suppwc( ) C Fs  forallt e [0;T],
where we recall that Fs is defined in Lemma [3:2] This lemma states that Vi), is uniformly bounded

in Fs by C(6)|lwoll 1L, independently of k (provided ey < &.(4)). Hence there exists Ry > 0
independent of k£ such that

suppwe(t,+) C Kr for all t € [0;T], with K7 := B(0, Ry) N Fs.

We also introduce a Jordan domain Or such that Kr C Or C Fs/; and dist(K7,007) = §/2.

We finally set My = ||wol| o (r2) and Ry large enough such that Or C B(0, Ry). Hence, My and Ry
are independent of k.

For any f € C!(R?), we note 9.[f] and ¥n[f] respectively the solution of and (L.4), then we
derive the following corollary from Theorem

Corollary 3.4. There exists C such that for any g9 < &y (where &y is the quantity o appearing

in Theorem , any k € FV(eo), any Fn verifying (A, ) and any f compactly supported in
B(0, Ry) which is bounded by My, then

aN 3-n p(l—n)

— 1
vamﬂ—vwc[ﬂrwmm<c{(d) i = Rl gy + = Rl sy + 1l e ey
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The proof comes directly from the mean value theorem (and the harmonicity of I'j n), because
B(x,5/2)CR2\KPMC.FN for all x € Or. o
Next, we define Ty € (0,T] such that wy stays compactly supported in Op:

Ty := sup {T*, suppwy (t,-) € Or Vt € [0, T]}
T.€[0,T]

As the vorticity is transported by a continuous vector field uy, we state that Ty > 0 and that there

are only two possibilities:

(i) Ty = T, hence suppwy(t,-) C Or for all t € [0,T] ;

(ii) Ty < T, hence suppwn (T, ) N OO # 0.
In the sequel of this section, we will derive uniform estimates for all ¢ € [0, T] (where the support of
wy is included in Op), and we will conclude by a bootstrap argument that (i) cannot happen if &g is

chosen small enough, which will imply that the estimates hold true on [0, 7.
From the solution (u.,w.), we can define the trajectories (t,z) — X (t,z) on RT x suppwq by

OX, r)=1u €T
{ 00 = o Xt 59

and we recall that the vorticity is constant along the trajectories: wq(t, X.(t,2)) = wo(z). Hence, for
any x € suppwo, Xc(t,z) € Kp for all t € [0,T]. In the same way, we define the trajectories associated
to (un,wn) on R x Fy by

OIN(t,x) = un (t, XN (L, 2)),
{ XN(O x) = xN " (3.7)

along of which wy is constant, and Xy (¢,z) € Or for all (¢,z) € [0, Ty] X suppwo.
3.2.1. Stability estimate for velocities. The first step of our proof is to derive a uniform estimate of

ue — uy in [0,Tx] x Op. Introducing the vector field ity := V1) [wy] and as wy(t,-) is compactly
supported in B(0, Ry) with [|wx (¢, -)||zee = My, Corollary [3.4] states

. a 3—17 (1+27I) % 9
|r<uN—uN><t,->uLoo<oT><c[(d) = Flly T ey + 1= By + 1 e | -

for all t € [0,Tn]. For shortness, we denote in the sequel of the proof:

an 3-1n p(1+2n) 1 9
F(N,k) = <g> + [l — k”y;f Lp(R2) + [l — kHﬁvfl,p(H@) + HkHLoo(RZ)-

The second part can be estimated by Lemma

[(ue = an(E, )l e (0) < [[Vielwe = wn] ()l Lo (7 ,5) < C(0/2)[[(we = wn) ()| L1nLe (r2)
< CH(wC - N)( 7')”L°°(R2)7 vt e [OvTN]a

because w. and wy are supported in B(0, Ry).
Putting together these two estimates, we conclude that

[(ue = un)(t; )l L (or) < C[F(N, k) + [(we — wn)(t, )L mey |, V€ [0, Tn]. (3.8)
Moreover, thanks to the second estimate of Lemma we state that
C(1+ ot Y lnno ) + lon(t oz (1 + IVor ()l e))
C(6,wo) In(2 + [[Vwn (¢, ) || oo (r2))
so Corollary implies that there exists C' such that
IVun (t, )|z (0r) € CIn@2 + [[Von(t, )=o), V€ [0, Tn]. (3.9)

IVan ()| Lo (or) <
<
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3.2.2. Uniform C! estimates for vorticities. Differentiating the vorticity equation, we get for i = 1,2:
010z, wN + un - VOy,wn = —0gz,un - Vwh,

hence

Do (t, Xy (£ 7)) = Do) — /O (Onu - Vion) (s, X (5,2)) ds.

As Xn(t,x) € Or for all (t,z) € [0, Tn] xsuppwp and as we know that [|Vuy || Lo ([0, 1y]x0p) is bounded
(see (3.9)), we get that

t
IVwn (¢, )| oo r2y < [IVwol| poo (r2) + C/ IVwn (s, )| oo r2) In(2 + [[Vwn (s, ) || Lo (v2)) ds.
0
Gronwall’s lemma allows us to conclude the following estimate for the vorticity:

IVwn (t, ) pomey < C, Vit € [0,Tw]. (3.10)

3.2.3. Stability estimate for vorticities. Subtracting the vorticity equations, we can write

Ot(we — wN) + te - V(we —wn) = —(ue — un) - Vwp,
Op(we — wn) +un - V(we — wy) = —(ue — upn) - Ve

which imply that
(e — wn) (b, Xolt 2)) = — /Ot (e — ) - Veow ) (5, Xe(s, 2)) ds,
(e — wn)(t X (t,2)) = — /Ot (e — ) - Vi) (5, Xov(s,2)) ds.

As the support of (w. —wn)(¢, ) is included in X, (¢, suppwg) U X n (¢, suppwyp), we use (3.8) and (3.10)

to write
t
I (we = wn) (g 2y < C|(FIN,E) + /0 (e = wn)(s, )l qezy ds|, ¥t € [0,Ty).

Therefore, Gronwall’s lemma gives

[(we = wn) ()| oo (r2) < CF(N, k), vt € [0, Tn], (3.11)
and (3.8) becomes
[(ue —un)(t, M peo (o) < CF(N, k), vt € [0, Tn]. (3.12)

3.2.4. Stability estimate for trajectories. From the definition of the trajectories (3.6))-(3.7) and repeat-
ing the decomposition of Section [3.2.1 we compute

0l(Xn = Xo)(t,2)* < 2/(Xy = X) (¢, 2)| (I(UN = ue)(t Xn ()] + Juc(t, Xn (L, 7)) — uelt, Xc(t,fﬂ))l)
< Cl(Xn = Xo)(t o)l (F(N,B) + |(Xn = Xo)(t )] ), Ve [0,Tw],

where we have used (3.12)) and that u, € C1([0,T] x Or). We deduce again by Gronwall’s lemma that

(Xn — Xe)(t, )| < CF(N, k), Vt € [0,Tn], Vo € supp wo. (3.13)
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3.2.5. Bootstrap argument and conclusion. To summarize, for § given, we choose g9 < &y such that
CF(N,k) <4§/2 (3.14)

for any k € FV(eo) and Fy verifying (Ax,,, ), where C is the constant appearing in (3.13). We
point out that C' depends on &y but not on €y. As €9 < &p, for any k € FV(g9) and Fy verifying

, the estimates (3.11)-(3.13) are valid. As X.(t,z) € Kr for all (¢,z) € [0,7] x suppwp,
we conclude from (3.13) and (3.14) that the situation (ii) in Page [29|is impossible. This allows us to
conclude that Ty = T" and that (3.11])-(3.13]) are valid for all ¢ € [0, T].

In Section replacing Or by any bounded open set O € R?\ Kpys, and using (3.11)), we get
easily that (3.12)) is valid if we replace O by O. This ends the proof of Theorem .
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