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Abstract. We compute the first order correction of the effective viscosity for a suspen-
sion containing solid particles with arbitrary shapes. We rewrite the computation as an
homogenization problem for the Stokes equations in a perforated domain. Then, we ex-
tend the method of reflections [11, 16] to approximate the solution to the Stokes problem
with a fixed number of particles. By obtaining sharp estimates, we are able to prove that
this method converges for small volume fraction of the solid phase whatever the number
of particles. This allows to address the limit when the number of particles diverges while
their radius tends to 0. We obtain a system of PDEs similar to the Stokes system with a
supplementary term in the viscosity proportional to the volume fraction of the solid phase
in the mixture.

1. Introduction

When a viscous fluid transports solid particles, the particles modify in return the prop-
erties of the fluid. For instance, the rheological properties of the fluid are altered. In
his seminal paper [5], Einstein addresses the computation of the effective viscosity of the
mixture, having in mind it could help recovering the size of the transported particles. He
obtains then the formula:

(1) µeff = µ

(
1 +

5

2
φ+ o(φ)

)
.

Here µ stands for the (bulk) viscosity of the incompressible fluid alone, µeff denotes the
viscosity of the mixture and φ stands for the volume fraction of the solid suspension of
spheres. Einstein formula has been the subject of numerous studies: analysis of Einstein
”formal” computations [1, 14, 2, 9], computation of second order expansion [10, 4, 7]. We
refer the reader also to [13] for a comprehensive picture on the possible phenomena influ-
encing the effective viscosity of a suspension. Most of these studies consider homogeneous
suspensions. However, as mentioned in [13], a formula for the effective viscosity depending
only on the volume fraction is hopeless to describe general suspensions, the factor 5/2
in the above formula being in particular valid for a suspension of spheres a priori. In
this paper, we provide a method for the computation of an effective viscosity allowing a
distribution of shapes for the particles in the suspension.

A second motivation of the paper is to obtain a ”local” formula for the effective viscosity
similar to [1, 16]. To be more precise, we rephrase now the computation of an effective
viscosity, as depicted in [3], into a homogenization problem. We consider an incompressible
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newtonian fluid occupying the whole space R3 and transporting a cloud made ofN particles.
We neglect the particle and fluid inertia so that computing an effective viscosity amounts
to understand the behavior of the system when it is submitted to a strain flow x 7→ Ax
(where A is a symmetric trace-free matrix). This reduces to the following stationary
problem. We denote by (u, p) the fluid velocity-field/pressure. The domain of the l-th solid
particle is the smooth bounded open set Bl ⊂ R3 and its center of mass is xl. The motion
of Bl is associated to a pair of translational/rotational velocities (Vl, ωl). Introducing µ
the viscosity of the fluid, the unknowns (u, p, (Vl, ωl)l=1,...,N) are computed by solving the
problem {−div Σµ(u, p) = 0

div u = 0
in R3 \

N⋃
l=1

Bl,(2) {
u(x) = Vl + ωl × (x− xl) on ∂Bl, for l = 1, . . . , N

u(x) = Ax at infinity,
(3) 

ˆ
∂Bl

Σµ(u, p)nds = 0

ˆ
∂Bl

(x− xl)× Σµ(u, p)nds = 0

for l = 1, . . . , N.(4)

In this system, we introduced the fluid stress-tensor Σµ(u, p). Under the assumption that
the fluid is newtonian, it reads:

Σµ(u, p) = 2µD(u)− pI3 = µ(∇u+∇>u)− pI3.

The zero source terms on the right-hand side of the first equation in (2) and both equations
of (4) are reminiscent of the intertialess assumption. The second equation of (3) must be
understood as

lim
x→∞
|u(x)− Ax| = 0.

In the last equations (4) the symbol n stands for the normal to ∂Bl. By convention, we
assume that it points inwards the solid Bl and outwards the fluid domain that we denote
FN in what follows:

FN = R3 \
N⋃
l=1

Bl.

Under the assumption that the Bl do not overlap, existence/uniqueness of a solution
to (2)-(3)-(4) falls into the scope of the classical theory for the Stokes equations (see [6,
Section V]). We give a little more details in the next section. We only mention here that
the pressure is unique up to a constant. But, this has no impact on our computations
and we consider the pressure as being uniquely defined below (this problem could be fixed
by assuming that one mean of the pressure has a fixed value). Our aim is to tackle the
asymptotics of this solution when the Bl are small and many. To make this statement
quantitative, we introduce further assumptions regarding the Bl. Namely, we assume that
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there exists a diameter a > 0, centers xl ∈ R3 and shapes Bl (meaning smooth bounded
connected open sets of R3) such that

(H1) Bl ⊂ B(0, 1),

ˆ
Bl
xdx = 0, Bl = xl + aBl, ∀ l = 1, . . . , N.

Then, we prescribe that the solid domains remain in a compact set K and that there is
no-overlap between the particles:

(H2) Bl ⊂ K ∀ l = 1, . . . , N , d := min
l 6=λ
|xl − xλ| > 4a.

With these conventions, we note that the total volume of the solid phase is at most 4Na3π/3
so that, globally, in the volume K, the volume fraction of the solid phase is controlled by
4Na3π/3|K|. However, the separation assumption (H2) implies that we have also a uniform
local control of the solid phase volume fraction by a3/d3. We use also constantly below that,
with (H1)-(H2), we obtain N ≤ C|K|/d3.

In order to derive an effective viscosity for the mixture, the classical point of view
proposed in [5, 3] is to compute the rate of work of the viscous stress tensor on the
boundary ∂K of the domain K containing the solid particles:

Weff :=

ˆ
∂K

Σµ(u, p)n · Axds

and to compare the excess with respect to the value W0 = 2µA : A|K| that would yield in
case there is no particle. In brief, the analysis of Einstein – in the case the Bl are spheres of
radius a filling a bounded domain – relies on splitting the solution (u, p) into u = u0 + u1,
p = p0 + p1. Here (u0, p0) is the pure strain applied on the boundaries at infinity:

u0(x) = Ax p0(x) = 0,

(this is a solution to the Stokes equations on R3 since A is trace-free) while the term (u1, p1)
compensates the trace of the boundary conditions u−u0(x) = −Ax on the Bl that cannot
be matched by a suitable pair (Vl, ωl) in (3). Namely, one may write:

u(x)− u0(x) = Axl − A(x− xl) on ∂Bl.

Since A is symmetric the latter linear term in the boundary condition cannot be com-
pensated by a rigid rotation. Under the assumption that the holes are well-separated one
provides the approximation:

u1(x) =
N∑
l=1

Ua[A](x− xl), p1(x) =
N∑
l=1

P a[A](x− xl),

where (Ua[A], P a[A]) is the solution to the Stokes problem (2) outside B(0, a) with bound-
ary condition Ua(x) = −Ax on ∂B(0, a) (and vanishing boundary conditions at infinity).
With this formula at-hand, one obtains that

Weff = W0 +
N∑
l=1

ˆ
∂K

Σµ(Ua[A](· − xl), P a[A](· − xl))n · Axds.
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Via conservation arguments related to the divergence form of the Stokes equation, the
boundary integrals involved in Weff can be transformed into N integrals over the bound-
aries of B(xl, a). It is then possible to apply the explicit value of the solution (Ua, P a).
Summing the contributions of all the particles leads finally to the first order expansion:

Weff = 2µA : A

(
|K|+ 1

2

20πNa3

3

)
,

leading to formula (1). We refer the reader to [3, p.246] for more details on this computa-
tion.

Herein, we show that solutions to (2)-(3)-(4) are close to solutions to the continuous
analogue: {−div(2µ[(1 + Meff )(D(u))]− pI3) = 0

divu = 0
on R3,(5)

u(x) = Ax at infinity.(6)

Here the symbol (1+Meff )(D(u)) stands for D(u)+Meff (D(u)), with Meff an application
that maps D(u) to the 3 × 3 matrix Meff (D(u)). This linear mapping measures the
collective reaction of the particles to the strain induced by D(u). We emphasize that we
allow this mapping to depend on the space variable x. To be more precise, we explain now
the computation of Meff . For arbitrary l ∈ {1, . . . , N} let denote by (U [A,Bl], P [A,Bl])
the unique solution to{

−divΣ(u, p) = 0 in R3 \Bl,

divu = 0 in R3 \Bl,

{
u(x) = −Ax+ V + ω × x on ∂Bl,

u(x) = 0 at infinity ,
(7)

ˆ
∂Bl

Σ(u, p)ndσ = 0

ˆ
∂Bl

(x− xl)× Σ(u, p)ndσ = 0.(8)

In this system, we have µ = 1 but we drop the index 1 of the symbol Σ for legibility. We
note that (V, ω) are also unknowns in this problem. But they are the lagrange multipliers
of the constraint (8), so that we may retain only (U [A,Bl], P [A,Bl]) as the solution. We
associate to this solution:

M[A,Bl] := P3,σ

[ˆ
∂Bl
−Σ(U [A,Bl], P [A,Bl])n⊗ (x− xl) + 2U [A,Bl]⊗ nds

]
,

where P3,σ stands for the orthogonal projection (w.r.t. matrix contraction) on the space of
symmetric trace-free 3 × 3 matrices Sym3,σ(R). As shown in Section 2 below the matrix
M[A,Bl] encodes the far-field decay of the solution U [A,Bl] in the sense that:

(9) Ui[A,Bl](x) = M[A,Bl] : ∇U i(x) + l.o.t for i=1,2,3

at infinity (where U i contains vector-fields build up from the Green-function for the Stokes
problem). Due to the linearity of the Stokes equations, we have that, for fixed Bl the
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mapping A 7→ M[A,Bl] is linear and thus given by a mapping M[Bl] : Sym3,σ(R) →
Sym3,σ(R) (such a mapping can be identified with a 5× 5 matrix). We set then:

MN(x) =
3

4πa3

N∑
l=1

M[Bl]1B(xl,a)(x) =
3

4π

N∑
l=1

M[Bl]1B(xl,a)(x) ∀x ∈ R3.

We shall obtain below – under assumption (H1)-(H2)– that |M[Bl]| ≤ C independent of
the shape Bl. The mapping-function MN has then support in K with ‖MN‖L1(R3) . a3/d3

so that it is bounded independent of N. Then, one can think Meff as a possible weak limit
if the parameter N was tending to ∞.

For instance, in the case Bl are spheres of radius a (so that Bl is a sphere of radius 1)
comparing the expansion (9) with the explicit solutions to the Stokes problem (see [8, p.
39]) we obtain that M[A,Bl] = 20πA/3 so that

MN ∼ 5
N∑
l=1

1B(xl,a).

In this case, the convergence of MN reduces to the convergence of the distribution of centers
(xl)l=1,...,N . If the empirical measures associated to the distribution of centers converges to
some f ∈ L1(R3), we obtain, with φ = 4πNa3/(3|K|) the volume fraction of particles :

(10) MN ⇀ 5φf in L1(R3)− w.

We give herein a quantitative result with explicit stability bounds for the distance be-
tween solutions to the perforated problem (2)-(3)-(4) and to the continuous problem (5)-(6).
We restrict below to functions Meff in classes

M(ε) :=
{
M ∈ L∞(R3; Mat5(R)), s.t. Supp(M) ⊂ K and ‖M‖L∞(K) ≤ ε

}
.

Here ε > 0 is a given parameter related to the volume fraction a3/d3. We identify the space
of linear mappings Sym3,σ(R)→ Sym3,σ(R) with Mat5(R). With the notations introduced
before, a precise statement of our main result is the following theorem

Theorem 1.1. Let (H1)-(H2) be in force and denote by (uN , pN) the unique solution to
(2)-(3)-(4). Let ε0 > 0,Meff ∈M(ε0) and denote by (uc, pc) the unique solution to (5)-(6).

Under the assumption that ε0 is sufficiently small and that a3/d3 < ε0, for arbitary
p ∈ [1, 3/2) there exists a constant C0 depending only on p, ε0, K for which:

(11) ‖uN − uc‖Lploc(R3)

≤ Cp(K, ε0)|A|

[
‖MN −Meff‖Ḣ−1(R3) +

(
a3

d3

)1+θ

+ ‖Meff‖2L∞(R3)

]
where θ = 1

p
− 2

3
.
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Several comments are in order. First, In (11), the Ḣ−1(R3) norm on the right-hand
side must be understood componentwise. Second, in the particular case of spheres, we can
compute Meff via (10) so that, we obtain a fully rigorous justification of the system:{−div [2µ (1 + 5φf)D(u)− pI3] = 0

divu = 0
on R3,(12)

u(x) = Ax at infinity,(13)

that has been obtained previously in [16, 1]. Finally, the restriction on exponent p is
reminiscent of the singularity of solutions to (7), corresponding to the gradient of the
Green function for the Stokes problem on R3, i.e. like 1/|x|2. This singularity allows an
Lp-space for p < 3/2 in dimension 3. In particular, this restriction can be removed when
measuring the distance between uN and uc outside the particle domain K (see [16] in the
case of spheres).

As in the original proof of Einstein, Theorem 1.1 relies on two main properties. First,
each particle in the cloud behaves as if it was alone in the strain flow x 7→ Ax. Second, there
is an underlying additivity principle which implies that the action of the cloud of particles
on the fluid is the sum of the undividual actions of the different particles. In the two next
sections, we justify the first of these two properties by extending Einstein computations to
general suspensions. Broadly, a first guess (u, p) for a solution to (2)-(3)-(4) could be

u(0)app(x) = Ax p(0)app(x) = 0.

This yields a solution to (2) and (4) which does not fulfill the boundary conditions (3) on
∂Bl. So, we apply the linearity of the Stokes problem and introduce a first corrector:

u1(x) =
N∑
l=1

U [A,Bl](x− xl)

p1(x) =
N∑
l=1

µP [A,Bl](x− xl)

where


U [A,Bl](x) = aU [A,Bl]

(x
a

)
P [A,Bl](x) = P [A,Bl]

(x
a

)

Again the candidate u
(1)
app = u

(0)
app + u1 is a solution to (2) and (4) but does not match

boundary conditions (3). So, we proceed with compensating again the non rigid part of

the velocity-field u
(1)
app on the boundaries ∂Bl. This starts a process known as the ”method

of reflections”. It has been studied in other contexts in [11, 15, 12] and extended to the
problem of effective viscosity for a suspension of spheres in [16]. Herein, we modify a bit
the method by correcting only the first order term in the expansion of the boundary values

of u
(k)
app on ∂Bl :

u(k)app(x) = V
(k)
l + Ã

(k)
l · (x− xl) +O(|x− xl|2), V

(k)
l = u(k)app(xl), Ã

(k)
l = ∇u(k)app(xl).
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This enables to rely on the semi-explicit solutions (U [A,Bl], P [A,Bl]) to (7) and relate the
final computations with the associated M[A,Bl]. However, this does not rule out the key-
difficulty of the process. Indeed, the method of reflections leads to the iterative formula:

A
(k+1)
l =

∑
λ 6=l

D(U)[A
(k)
λ , Bλ](xl − xλ).

with a kernel D(U)[A,Bλ] wich decays generically like x 7→ a3A/|x|3. A priori, the above
iterative formula entails then the bound:

max
l
|A(k+1)

l | .
(
a3

d3

)
| ln(N)|max

l
|A(k)

l |

which yields that a3/d3 must be small w.r.t. ln(N) for the method to converge (see as-
sumption (2.3) in [16]). We remove this difficulty herein by showing that there exists a
Calderòn-Zygmund operator underlying the above recursive formula. This enables to rule
out the limitation on a3/d3 with respect to the number N of particles. These computations
are explained in the two next sections. Section 2 is devoted to the analysis of the problem
(7)-(8). The Section 3 builds up on this analysis to study the convergence of the method
of reflections and compute error estimates between the sequence of approximated solutions

u
(n)
app and the exact solution uN to (2)-(3)-(4).

The two last sections are devoted to the proof of the additivity principle and to complete
the proof of Theorem 1.1. Once the method of reflections is proved to converge, we have
an expansion of the solution to (2)-(3)-(4) in terms of the parameter a3/d3. We prove that
there exits an equivalent expansion of the solution to (5)-(6) w.r.t. Meff so that there is a
correspondance between the first terms in the expansions of both solutions. We emphasize
that, as classical with the weak-formulation of the Stokes problem, one obtains estimates
on the difference of velocity-fields uN − uc. Regularity properties of the Stokes problem
entail then similar properties for the pressures.

Through the paper, we use the following conventions. In the space of 3 × 3 matrices
Mat3(R), we denote by Sym3(R) the set of symmetric matrices and Sym3,σ(R) its subspace
containing only the trace-free ones. We denote P3,σ the orthogonal projection from Mat3(R)
onto Sym3,σ(R) with respect to the matrix contraction.

Concerning function spaces, we use classical notations for Lebesgue and Sobolev spaces.
We also introduce the Beppo-Levi space Ḣ1 and its divergence-free variant:

Ḣ1
σ(O) := {u ∈ Ḣ1(O) such that divu = 0 on O}.

In the whole paper, we denote U := (U ij)1≤i,j≤3 and q := (q1, q2, q3) the fundamental
solution to the Stokes equation in the whole space R3, which can be written

U ij := − 1

8π

[
δij
|x− y|

+
(xi − yi)(xj − yj)

|x− y|3

]
, qj =

1

4π

xj − yj
|x− y|3

.

for i, j = 1, 2, 3. We collect (U i,1, U i,2, U i,3) in the vector U i.
We also introduce the Bogovskii operator BB[f ] defined for arbitrary mean-free f ∈

L2(B). It is well-known that this BB is continuous with values in H1
0 (B) and characterized
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by divBB[f ] = f in B. In particular, we denote divBλ1,λ2 [f ] := BB(0,λ2)\B(0,λ1)
[f ] for any

0 < λ1 < λ2.

2. Analysis of the Stokes problem

In the whole section, we suppose that B ⊂ B(0, 1) ⊂ R3 has smooth boundaries ∂B.
Given a trace-free A ∈ Sym3,σ(R), let consider the following problem:{

−divΣ(u, p) = 0 in R3 \ B,
divu = 0 in R3 \ B,

{
u(x) = −Ax+ V + ω × x on ∂B,
u(x) = 0 at infinity ,

(14)

ˆ
∂B

Σ(u, p)ndσ = 0

ˆ
∂B
x× Σ(u, p)ndσ = 0.(15)

It is classical that, given alternatively a 3× 3 matrix A and V, ω ∈ R3 ×R3, there exists a
unique solution (u[A], p[A]) (with V = ω = 0) and (u[V, ω], p[V, ω]) (with A = 0) to (14)
in Ḣ1(R3)× L2(R3). The mapping

(V, ω) 7→ (

ˆ
∂B

Σ(u[V, ω], p[V, ω])ndσ,

ˆ
∂B
x× Σ(u[V, ω], p[V, ω])ndσ)

is then linear and symmetric positive definite. In particular, there exists a unique solution
(VA, ωA) to the problem:ˆ

∂B
Σ(u[VA, ωA], p[VA, ωA])ndσ = −

ˆ
∂B

Σ(u[A], p[A])ndσ

ˆ
∂B
x× Σ(u[VA, ωA], p[VA, ωA])ndσ = −

ˆ
∂B
x× Σ(u[A], p[A])ndσ.

The candidate U [A,B] = u[A] + u[VA, ωA], P [A,B] = p[A] + p[VA, ωA] is then a solution to
(14)-(15). By difference and integration by parts, we obtain uniqueness of a velocity-field
solution which enables to recover that the pressure is unique up to a constant also. Since
U [A,B] matches a velocity-field of the form −Ax + V + ω × x on ∂B, it is classical to
extend U [A,B] by the field corresponding to this boundary value on B yielding a vector-
field U [A,B] ∈ Ḣ1

σ(R3). Straightforward integration by parts arguments show that this
extended U [A,B] realizes:

min
{ˆ

R3

|D(u)|2, u ∈ Ḣ1
σ(R3), D(u) = −A on B

}
.

In particular, we note that the set on which the minimum is computed on the right-hand
side increases when B decreases. Since we assume B ⊂ B(0, 1) in this section, we infer
a uniform bound for ‖D(U [A,B])‖L2(R3) by the minimum reached for B = B(0, 1). This
yields that

(16) ‖D(U [A,B])‖L2(R3) ≤ C|A|

(and thus ‖U [A,B]‖Ḣ1(R3) ≤ C|A| also) with a constant C uniform in B ⊂ B(0, 1).
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One may proceed similarly to show that, under the assumption (H1)-(H2), the problem
(2)-(3)-(4) admits a unique solution (uN , pN) such that

(17) vN : x 7→ uN(x)− Ax ∈ Ḣ1(FN), x 7→ pN(x) ∈ L2(FN)

Furthermore, the velocity-field of this solution can be extended to the whole R3 to yield a
vector-field vN(x) = uN(x)− Ax that realizes:

min
{ˆ

R3

|D(u)|2, u ∈ Ḣ1
σ(R3), D(u) = −A on Bl ∀ l = 1, . . . , N

}
.

In particular, under assumptions (H1)-(H2) we can construct an extension ṽN on
⋃
lB(xl, 2a)

of the field that matches x 7→ −A(x−xl) on each of the B(xl, a) (and thus on Bl ⊂ B(xl, a))
by truncating and lifting the divergence terms. Straightforward computations show that
we have then: ˆ

R3

|∇vN |2 = 2

ˆ
R3

|D(vN)|2 ≤ 2

ˆ
R3

|D(ṽN)|2 ≤ C
a3

d3
|A|.

so that there exists a uniform constant C for which:

(18) ‖∇vN‖L2(R3) ≤ C

(
a3

d3

) 1
2

.

Before going to the main result of this section, we prepare the proof with a control on
momenta of the trace of

Σ[A,B] = 2D(U)[A,B]− P [A,B]I3.

on ∂B. This is the content of the following preliminary lemma:

Lemma 2.1. There exists an absolute constant C such that:∣∣∣P3,σ

[ˆ
∂B

Σ[A,B]n⊗ ydσ(y)

]∣∣∣ ≤ C|A|,

We recall that P3,σ stands for the orthogonal projection from Mat3(R) onto Sym3,σ(R).
With this lemma, we obtain that the linear mappings

A 7→ P3,σ

[ˆ
∂B

Σ[A,B]n⊗ ydσ(y)

]
are uniformly bounded whatever B ⊂ B(0, 1).

Proof. Because of the linearity of the Stokes equations and of the stress tensor, the mapping
from Sym3,σ(R) to Sym3,σ(R):

L : A 7→ P3,σ

[ˆ
∂B

Σ[A,B]n⊗ ydσ(y)

]



10 MATTHIEU HILLAIRET AND DI WU

is also linear. So, let (Ei)i=1,...,5 an orthonormal basis of Sym3,σ(R), and (Vi := U [Ei,B])i=1,...,5

the corresponding velocity-fields solution to the Stokes problem (14)-(15). Then, the map-
ping L is represented in this basis by the matrix L:

L :=
( ˆ

∂B
Σ[Ei,B]n⊗ ydσ(y) : Ej

)
1≤i,j≤5

,

Our proof reduces to obtaining that |Li,j| ≤ C for arbitrary i, j in {1, . . . , 5}. So, let fix
i, j, by integrating by parts, we have that

Li,j =

ˆ
∂B

Σ[Ei,B]n · (Ejy)dσ(y) = 2

ˆ
R3\B

D(Vi) : D(Vj).

so that:

|Li,j| ≤ 2‖D(Vi)‖L2(R3\B)‖D(Vj)‖L2(R3\B) ≤ C|Ei||Ej|,

where we applied (16) to obtain the last inequality. This concludes the proof. �

We continue the analysis of (14)-(15) by providing pointwise estimates on U [A,B]. The
content of the following theorem is reminiscent of [6, Section V.3]:

Proposition 2.2. Let (U [A,B], P [A,B]) be the unique solution to (14)-(15). There exists
a vector field H[A,B] depending on A and B, such that for any |x| > 4,

U [A,B](x) = K[A,B](x) +H[A,B](x),

where K[A,B]i(x) = M[A,B] : ∇U i(x) for i = 1, 2, 3 with:

(19) M[A,B] = P3,σ

{ˆ
∂B

[−(Σ[A,B]n)⊗ y + 2U [A,B]⊗ n] dσ(y)

}
.

Moreover, there exists a constant C independent of A for which:

|M[A,B]| ≤ C|A| , |∇βH[A,B](x)| ≤ C|A| 1

|x|3+|β|
∀ β ∈ N3.

Before giving a proof of this proposition, we note that for large x, we have:

∇U i(x) ∼ C

|x|2
.

Consequently the splitting that we obtain in the above proposition corresponds to the
extraction of the leading order term (K[A,B](x)) at infinity. A second crucial remark
induced by this proposition is that the amplitude of both terms (the leading term K and
remainder H) do not depend asymptotically on the shape B.

Proof. Let χ(x) ∈ C∞0 (R3) such that χ ≡ 1 in R3 \ B(0, 2) and χ ≡ 0 in B(0, 1). We
recall that Bλ1,λ2 stands for the Bogovskii operator lifting the divergence on the annulus

B(0, λ2) \B(0, λ1).
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By standard ellipticity arguments U [A,B], P [A,B] are C∞ on R3 \ B. Let define

Ū [A,B](x) := U [A,B](x)χ(x)−B1,2[U [A,B] · ∇χ](x)

P̄ [A,B](x) := P [A,B](x)χ(x).

Up to a mollifying argument that we skip for conciseness, we may assume that Ū [A,B] ∈
C∞(R3). The pair (Ū [A,B], P̄ [A,B]) satisfies then the Stokes equation on R3 with source

term fχ[A,B] = −div Σ̄[A,B] ∈ C∞c (B(0, 2) \B(0, 1)) where:

Σ̄[A,B] := −P̄ [A,B]I3 + 2D(Ū [A,B]).

Since Ū [A,B] ∈ Ḣ1(R3) and we have uniqueness of Ḣ1-solutions to the Stokes equations
on R3, we may use the Green function U to compute Ū [A,B]. This entails that, for each
i = 1, 2, 3, we have:

Ū [A,B]i =

ˆ
R3

fχ[A,B](y) · U i(x− y)dy.

In particular, for |x| > 2 and i = 1, 2, 3 (where Ū [A,B] coincides with U [A,B]), a Taylor
expansion yields:

U [A,B]i(x) =

ˆ
R3

fχ[A,B](y)dy · U i(x)−
ˆ
R3

fχ[A,B](y)⊗ ydy : ∇U i(x)

+
∑
|α|=2

ˆ
R3

fχ[A,B](y) ·
ˆ 1

0

(1− t)yαDαU i(x− ty)dtdy.

= T0 +K[A,B](x) +H[A,B](x).

Concerning T0, we notice thatˆ
R3

fχ[A,B](y)dy =

ˆ
B(0,3)\B(0,1)

divΣ̄[A,B]

=

ˆ
∂B(0,3)

Σ̄[A,B](y)ndσ(y) =

ˆ
∂B(0,3)

Σ[A,B](y)ndσ(y)

=

ˆ
∂B

Σ[A,B](y)ndσ(y) = 0

Hence T0 = 0. To analyse K[A,B](x), we denote:

M[A,B] :=
1

2

(ˆ
R3

fχ[A,B](y)⊗ ydy + (

ˆ
R3

fχ[A,B](y)⊗ ydy)T
)

and

A[A,B] :=
1

2

(ˆ
R3

fχ[A,B](y)⊗ ydy − (

ˆ
R3

fχ[A,B](y)⊗ ydy)T
)
.
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First, for arbitrary skew-symmetric matrix E, there holds:ˆ
R3

fχ[A,B](y) · (Ey)dy =

ˆ
B(0,3)\B(0,1)

fχ[A,B](y) · (Ey)dy

=

ˆ
∂B(0,3)

[
Σ̄[A,B]n

]
· Eydσ(y)−

ˆ
B(0,3)\B(0,1)

Σ̄[A,B] : ∇(Ey)dy,

On the right-hand side, we have, since Σ̄[A,B] is symmetric and E is skew-symmetric:ˆ
B(0,3)\B(0,1)

Σ̄[A,B] : ∇(Ey)dy =

ˆ
B(0,3)\B(0,1)

Σ̄[A,B] : E dy = 0.

We also notice thatˆ
∂B(0,3)

[
Σ̄[A,B]n

]
· Eydσ(y) =

ˆ
∂B(0,3)

[
Σ[A,B]n

]
· Eydσ(y)

=

ˆ
B(0,3)\B(0,1)

Σ[A,B] : ∇(Ey)dy −
ˆ
∂B

[
Σ[A,B]n

]
· Eydσ(y)

= −
ˆ
∂B

[
Σ[A,B]n

]
· Eydσ(y) = 0.

To obtain the last equality, we use that since E is skew-symmetric, there is a vector e such
that Ex = e× x and:ˆ

∂B

[
Σ[A,B]n

]
· Eydσ(y) =

ˆ
∂B

Σ[A,B]n× ydσ(y) · e = 0.

Therefore we obtain that A[A,B] = 0. Consequently, we have

K[A,B](x) =M[A,B] : ∇U i(x).

Since M[A,B] is symmetric, we deduce that:

K[A,B](x) =M[A,B] : D(U i)(x) = P3,σ[M[A,B]] : D(U i)(x) = P3,σ[M[A,B]] : ∇U i(x).

So, we set M[A,B] = P3,σ[M[A,B]] and we turn to show (19) and |M[A,B]| ≤ C|A|. To this
end, we notice that M[A,B] is completely fixed by its action on matrices S ∈ Sym3,σ(R).
So, let fix S ∈ Sym3,σ(R). We haveˆ

R3

fχ[A,B](y)⊗ ydy : S =

ˆ
R3

fχ[A,B](y) · (Sy)dy =

ˆ
B(0,3)\B

fχ[A,B](y) · (Sy)dy.

Applying that divΣ̄[A,B] = fχ[A,B] again, we obtainˆ
B(0,3)\B

fχ[A,B](y) · (Sy)dy =

ˆ
∂B(0,3)

(Σ̄[A,B]n) · (Sy)dσ(y)−
ˆ
B(0,3)\B

Σ̄[A,B] : Sdy

=

ˆ
∂B(0,3)

(Σ̄[A,B]n) · (Sy)dσ(y)− 2

ˆ
B(0,3)\B

D(Ū [A,B]) : Sdy

+

ˆ
B(0,3)\B

P̄ [A,B]I3 : Sdy
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Since S is trace-free, the last pressure term vanishes. We rewrite the first term on the
right-hand side:ˆ
∂B(0,3)

(Σ̄[A,B]n) · (Sy)dσ(y) =

ˆ
∂B(0,3)

(Σ[A,B]n) · (Sy)dσ(y)

= −
ˆ
∂B

(Σ[A,B]n) · (Sy)dσ(y) + 2

ˆ
B(0,3)\B

D(U [A,B]) : Sdy

This entails that:ˆ
B(0,3)\B

fχ[A,B](y) · (Sy)dy = −
ˆ
∂B

(Σ[A,B]n) · (Sy)dσ(y)

+2

ˆ
B(0,3)\B

D(U [A,B]− Ū [A,B]) : Sdy.

We recall that pressure term do vanish since S is trace-free. Concerning the first integral
on the right-hand side, we notice again that:ˆ

∂B
(Σ[A,B]n) · (Sy)dσ(y) = P3,σ

[ˆ
∂B

(Σ[A,B]n)⊗ ydσ(y)

]
: S.

We are then in position to apply Lemma 2.1 which yields that

(20)
∣∣∣ ˆ

∂B
(Σ[A,B]n) · (Sy)dσ(y)

∣∣∣ ≤ C|A||S|,

for an absolute constant C.We proceed with the second integral. We notice that U [A,B](x) =
Ū [A,B](x) for any |x| > 2 and Ū [A,B](x) = 0 on ∂B. Henceˆ

B(0,3)\B
D(U [A,B]− Ū [A,B]) : Sdy =

ˆ
B(0,3)\B

D
[
U [A,B]− Ū [A,B]

]
dy : S

=

ˆ
∂B(0,3)∪∂B

(U [A,B]− Ū [A,B])⊗ ndσ : S

=

ˆ
∂B
U [A,B]⊗ ndσ : S

= A : S |B|,

where we applied that U [A,B](y) = Ay+ V + ω× y to obtain the last identity. Gathering
the previous computations we obtain that, for arbitrary S ∈ Sym3,σ(R), there holds:

M[A,B] : S =

ˆ
R3

fχ[A,B](y) · Sydy

= −P3,σ

[ˆ
∂B

Σ[A,B]n⊗ ydσ(y)

]
: S + 2

ˆ
∂B

U [A,B](y)⊗ ndσ(y) : S.

This concludes the proof of (19). Recalling that B ⊂ B(0, 1), and applying the explicit
computation of the last integral in this latter identity, we obtain also |M[A,B]| ≤ C|A|.
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To finish the proof, we handle the last termH[A,B](x) for |x| > 4. We prove the required
estimate for β = (0, 0, 0), the extension to arbitrary β being obvious. Given |α| = 2, and

|x| > 2, we can find φx ∈ C∞(R3) with Supp(φx) ⊂ B(0, 3) \B(0, 1) such that:

ˆ 1

0

(1− t)yαDαU i(x+ ty)dt =: φx(y) ∀ y ∈ Supp(χ)

Asymptotic properties of U i entail then that ‖φx‖W 1,∞(R3) ≤ C/|x|3. Therefore, we have,

thanks to the uniform bound (16) and the embedding Ḣ1(R3) ⊂ L2
loc(R3) :

∣∣∣ˆ
R3

fχ[A,B](y) ·
ˆ 1

0

(1− t)yαDαU i(x+ ty)dtdy
∣∣∣

≤ C‖fχ[A,B]‖Ḣ−1(B(0,3)\B(0,1))‖φx‖H1
0 (B(0,3)\B(0,1))

≤ C‖Ū [A,B]‖Ḣ1(B(0,3)\B(0,1))
1
|x|3 ≤ C‖U [A,B]‖Ḣ1(R3)

1
|x|3 ≤ C |A||x|3 .

This ends the proof of the proposition. �

We end this section by having a look to the interactions between the decomposition in
Proposition 2.2 with scaling properties of the Stokes problem (14)-(15). Indeed, for any
a < 1, standard scaling arguments imply that:

U [A, aB](x) = aU [A,B](x/a), P [A, aB](x) = P [A,B](x/a).

Consequently for arbitrary w ∈ S2, we have:

lim
t→∞

t2U [A, aB](tw) = a3 lim
t→∞

t2U [A,B](tw)

This entails that M[A, aB] = a3M[A,B] and

(21) K[A, aB](x) = a3K[A,B](x).

We can then compare remainder terms. This yields:

(22) |∇βH[A, aB](x)| ≤ C|A|a4

|x|3+|β|
∀ |x| > 4a.



EFFECTIVE VISCOSITY OF A POLYDISPERSED SUSPENSION 15

3. Approximation of the solution to the N-particle problem

In this section, we fix N large and A ∈ Sym3,σ(R). We provide an approximation via the
method of reflections for the solution (uN , pN) to{−div Σµ(u, p) = 0

div u = 0
in R3 \

N⋃
l=1

Bl,(23) {
u(x) = Vl + ωl × (x− xl) on ∂Bl, for l = 1, . . . , N

u(x) = Ax at infinity,
(24) 

ˆ
∂Bl

Σµ(u, p)nds = 0

ˆ
∂Bl

(x− xl)× Σµ(u, p)nds = 0

for l = 1, . . . , N.(25)

We recall that the method of reflections consists in matching the boundary conditions
on each particle by solving a Stokes system around each particle, gluing together the
local solutions into one approximation and iterating the process, since by gluing the local
solutions we alter the boundary values of the approximation. More precisely, we first define

u(0)app(x) := Ax, A
(0)
l := A for l = 1, . . . , N .

Given n ≥ 0 and assuming that a vector-field u
(n)
app and matrices (A

(n)
l )l=1,...,N are con-

structed we set:

A
(n+1)
l :=

∑
l 6=λ

D(K)[A
(n)
λ , Bλ](xl − xλ) ∀ l = 1, . . . , N(26)

v(n+1)(x) :=
N∑
l=1

U [A
(n)
l , Bl](x− xl) on FN(27)

u(n+1)
app (x) := u(n)app(x) + v(n+1)(x) on FN .(28)

Correspondingly, we compute a sequence of approximate pressure:

p(0)app = 0, p(n+1)
app = p(n)app + µ

N∑
l=1

P [A
(n)
l , Bl] , ∀n ∈ N.

The factor µ is introduced here since (U, P ) solves a Stokes system without viscosity.

The motivation of these definitions is the following remark. For each n ≥ 0 the flow
v(n+1) cancels the first order symmetric term of the leading part of the boundary value of

u
(n)
app on each ∂Bl. For instance, for n = 0, we notice that on ∂Bl, it holds:

u(0)(x) = Ax = Axl + A(x− xl),
v(1)(x) = −A(x− xl) +

∑
l 6=λ

U [A,Bl](x− xλ),
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which implies that:

u(1) = Axl +
∑
l 6=λ

U [A,Bl](x− xλ).

Since ε0 is very small, meaning that a� d, by Proposition 2.2 and (21), we have that for
each λ 6= l and any x ∈ ∂Bl:

U [A,Bl](x− xλ) = a3K[A,Bλ](x− xλ) +H[A,Bλ](x− xλ).

where H[A,Bλ](x − xλ) << K[A,Bλ](x − xλ) since |x − xl| >> a on ∂Bl. On the other
hand, by Taylor expansion, for any x ∈ ∂Bl and any λ 6= l,

a3K[A,Bλ](x− xλ) = constant + rotation + a3D(K)[A,Bλ](xl − xλ)(x− xl) +O(|x− xl|2).

Hence in the reflection method, we aim at canceling the symmetric gradient a3DK[A,Bλ](xl−
xλ)(x− xl). By a direct iteration, we obtain that, for any x ∈ ∂Bl and n ≥ 2, there holds:

u(n)app(x) =constant + rotation(29)

+ a3
∑
l 6=λ

K[A
(n−1)
λ ,Bλ](x− xλ)

+ a3
n−2∑
j=0

∑
l 6=λ

(
K[A

(j)
λ ,Bλ](x− xλ)−K[A

(j)
λ ,Bλ](xl − xλ)

− [∇K[A
(j)
λ ,Bλ](xl − xλ)](x− xl)

)
+

n−1∑
j=0

∑
l 6=λ

H[A
(j)
λ , Bλ](x− xλ)

The purpose of this section is twofold. First, we show that the method of reflections

converges. We quantify then how close the family of approximations (u
(n)
app)n∈N are to the

velocity-field uN solution to (23)-(24)-(25).

We start with the convergence of the method. Since the correctors are fixed with respect

to the family of matrices (A
(n)
l )l=1,...,N this amounts to prove that this family of matrices

defines a converging series (in n for arbitrary l ∈ {1, . . . , N}). This is the content of the
following proposition which relies mostly on item (1) of Lemma A.2 in Appendix A:

Proposition 3.1. There exists ε0 > 0 sufficiently small such that, for ε < ε0 and 1 < q <
∞, there exists a constant C(q, ε0) depending on q and ε0, but independent of N , such that

( N∑
l=1

|A(n+1)
l |q

)1/q
≤ C(q, ε0)

(a
d

)3−3/q ( N∑
l=1

|A(n)
l |

q
)1/q

∀n ∈ N.
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Proof. Let n ≥ 0. We first notice that, by Proposition 2.2, there exists symmetric matrices

M(n)
l := M[A

(n)
l ,Bl] such that

K[A
(n)
l , Bl]i = a3M(n)

l : ∇U i = a3
3∑

k=1

[M(n)
l ]kl∂kU

i,l, i = 1, 2, 3.

We remark then that, for i, j ∈ {1, 2, 3}, U ij is homogeneous in R3 \ {0} with degree −1.
Moreover U ij satisfies that

∆U ij = ∂iqj in R3 \ {0},

where for each j ∈ {1, 2, 3}, qj is harmonic in R3 \ {0}. We can apply then Lemma A.2 to

the computation of the components of A
(n+1)
l by choosing V := U ij and Q := ∂iqj for each

i, j ∈ {1, 2, 3}. This yields that, for ε0 sufficiently small and arbitrary q ∈ (1,∞)( N∑
l=1

|A(n+1)
l |q

)1/q
≤ C(q, ε0)

(a
d

)3−3/q( N∑
l=1

|M(n)
l |

q

)1/q

.

However, by Proposition 2.2, there exists an absolute constant (independent of n, l and

other parameters) such that |M(n)
l | ≤ C|A(n)

l |. This completes the proof of the proposition.
�

We proceed with the analysis of the quality of the sequence of approximations (u
(n)
app)n∈N.

Proposition 3.2. Let ε0 sufficiently small. There exists a constant Capp(ε0), such that for
n ≥ 3 and ε < ε0, there holds

‖uN − u(n)app‖Ḣ1(R3) ≤ Capp(ε0)|A|
(a
d

)11/2
.

Proof. By substracting the equations satisfied by (uN , pN) and (u
(n)
app, p

(n)
app), we obtain that

δu = uN − u(n)app, δp = pN − p(n)app satisfies:{−div Σµ(δu, δp) = 0

div δu = 0
in R3 \

N⋃
l=1

Bl,(30)

and 
ˆ
∂Bl

Σµ(δu, δp)nds = 0

ˆ
∂Bl

(x− xl)× Σµ(δu, δp)nds = 0

for l = 1, . . . , N.(31)

As for boundary conditions, we note that by definition of u
(n)
app, we have that

δu(x) = uN(x)− Ax−
n∑
j=1

v(j)(x), in FN
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Thanks to (17) and extending the velocities u
(n)
app and uN inside the particle domains with

their boundary values, we have that δu ∈ Ḣ1(R3). On the boundaries, reorganizing the
terms involved in v(j), see also (29), we have that there exists vectors (Wl, $l)l=1,...,N for
which:

(32) δu(x) = Wl +$l × (x− xl) + u∗l,n, on Bl, ∀l = 1, . . . , N,

where we have u∗l,n = S
(n)
l +R

(n)
l with:

S
(n)
l (x) :=

∑
l 6=λ

a3K[A
(n−1)
λ ,Bλ](x− xλ),

and

R
(n)
l (x) :=

n−2∑
j=0

∑
l 6=λ

a3K[A
(j)
λ ,Bλ](x− xλ)−

n−2∑
j=0

∑
l 6=λ

a3K[A
(j)
λ ,Bλ](xl − xλ)

−
n−2∑
j=0

∑
l 6=λ

a3[∇K[A
(j)
λ ,Bλ](xl − xλ)](x− xl) +

n−1∑
j=0

∑
l 6=λ

H[A
(j)
λ , Bλ](x− xλ).

We notice that for each l = 1, . . . , N , the formula defining u∗l,n can be extended to
B(xl, 2a). We also mention that again classical integration by parts arguments yield that
δu realizes

(33) min
{ˆ
FN
|D(v)|2, v ∈ Ḣ1(R3), div v = 0, D(v − u∗l,n) = 0 on Bl, ∀ l

}
.

The proof of our theorem then reduces to construct divergence-free vector-fields wl,n ∈
C∞c (B(xl, 2a)) that match u∗l,n (up to a rigid vector-field) on Bl for each l = 1, . . . , N .
Indeed, since δu is divergence-free and using the minimizing principle of (33), we have
then: ˆ

R3

|∇δu|2 = 2

ˆ
R3

|D(δu)|2 ≤ C
N∑
l=1

ˆ
B(xl,2a)

|∇wl,n|2.

So, we define:

wl,n(x) :=
N∑
l=1

(
χ(
x− xl
a

)(u∗l,n(x)− ū∗l,n)−BB(xl,2a)\B(xl,a)
[(u∗l,n(x)− ū∗l,n)] · ∇χ(

x− xl
a

)
)
,

Here, we denoted χ ∈ C∞0 (R3) such that χ ≡ 1 on B(0, 3/2) and χ ≡ 0 in R3 \B(0, 2), ū∗l,n
is the mean-value of u∗l,n over B(xl, 2a). Clearly, our candidate matches the condition

wl,n(x) = constant + u∗l,n, on Bl.

For the next computations, we introduce also S̄
(n)
l and R̄

(n)
l the mean-values of S

(n)
l and

R
(n)
l over B(xl, 2a) respectively so that ū∗l,n = S̄

(n)
l + R̄

(n)
l .
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By the scaling properties of the Bogovskii operator, we obtain that

ˆ
FN
|∇wl,n|2 ≤ C

N∑
l=1

‖∇(χ(
· − xl
a

)(u∗l,n − ū∗l,n))‖2L2(B(xl,2a))

.
4∑
j=1

H
(n)
l,j ,

where

H
(n)
l,1 :=

N∑
l=1

‖∇S(n)
l ‖

2
L2(B(xl,2a))

, H
(n)
l,2 :=

N∑
l=1

‖∇R(n)
l ‖

2
L2(B(xl,2a))

,

and

H
(n)
l,3 :=

1

a2

N∑
l=1

‖S(n)
l − S̄

(n)
l ‖

2
L2(B(xl,2a))

, H
(n)
l,4 :=

1

a2

N∑
l=1

‖R(n)
l − R̄

(n)
l ‖

2
L2(B(xl,2a))

.

Here, it is standard that the Poincaré-Wirtinger inequality entails that H
(n)
l,3 ≤ CH

(n)
l,1 and

H
(n)
l,4 ≤ CH

(n)
l,2 . Hence, we only need to bound H

(n)
l,1 and H

(n)
l,2 .

We deal with H
(n)
l,1 first. According to the definition of S

(n)
l and K[A

(n−1)
λ ,Bλ] (see

Proposition 2.2), for each l = 1, . . . N , we have

S
(n)
l =

∑
l 6=λ

a3K[A
(n−1)
λ ,Bλ](x− xλ)

= a3
∑
l 6=λ

(M[A
(n−1)
λ ,Bλ] : ∇U1(x),M[A

(n−1)
λ ,Bλ] : ∇U2(x),M[A

(n−1)
λ ,Bλ] : ∇U3(x)).

As in the proof of Proposition 3.1, for each i, j ∈ {1, 2, 3}, U ij is homogeneous in R3 \ {0}
with degree −1 such that

∆U ij = ∂iqj in R3 \ {0},

where for each j ∈ {1, 2, 3}, qj is harmonic in R3 \ {0}. By the definition of A
(n+1)
l and

applying Lemma A.2 by choosing V := U ij and Q := ∂iqj for each i, j ∈ {1, 2, 3} and
Proposition 3.1, we have

H
(n)
l,1 ≤ [C(2, ε0)]

n−1(a
d

)3n
(a3N)|A|2.

Up to restrict the size of ε0 we obtain that:

(34) H
(n)
l,1 ≤ C(ε0)

(a
d

)8
(a3N)|A|2.
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Now we turn to deal with H
(n)
l,2 . By the definition of R

(n)
l , we have that for any x ∈

B(xl, 2a),

|∇R(n)
l (x)| ≤ Ca4

n−1∑
j=0

∑
l 6=λ

|A(j)
λ |

1

|xl − xλ|4
.

We notice here – since the minimum distance between two xl’s is lager than d which is
much larger than a (for small ε0) – that, for each l = 1, . . . , N and for any x ∈ B(xl, 2a),
there holds: ∑

l 6=λ

|A(j)
λ |

1

|xl − xλ|4
≤ Cd−3

∑
l 6=λ

ˆ
B(xλ,d/2)

|A(j)
λ |

|xl − y|4
dy

≤ Cd−3
ˆ
R3

|Φ(j)(y)|
1|xl−y|>d/2
|xl − y|4

dy

≤ C(ε0)d
−3

ˆ
R3

|Φ(j)(y)|
1|x−y|>d/2
|x− y|4

dy,

where

Φ(j)(x) :=
N∑
l=1

A
(j)
l 1B(xl,d/2)(x).

Therefore we obtain, with a direct Young inequality for convolution:

H
(n)
l,2 ≤ C

a8

d6
‖
n−1∑
j=0

|Φ(j)| ∗
1|y|>d/2
|y|4

‖2L2(R3) ≤ C
a8

d8

( n−1∑
j=0

‖Φ(j)‖L2(R3)

)2
,

which combined with Proposition 3.1, yields that:

(35) H
(n)
l,2 ≤

(a
d

)8 n−1∑
j=0

(
C(2, ε0)

(a
d

)3/2 )2j
Na3|A|2 ≤ C(ε0)

(a
d

)8
Na3|A|2,

where we have chosen ε0 sufficiently small so that the series (
∑

j≥0C(2, ε0)(a/d)3/2)2j

converges. Combining (34)-(35), we obtain the expected result. �

4. Approximation of the target system

In this section, we fix A ∈ Sym3,σ(R) and Meff ∈ M(ε0) (for some small ε0) and we
analyse the properties of the asymptotic problem{−div(2µ(1 + Meff )(D(u))− pI3) = 0

divu = 0
on R3,(36)

u(x) = Ax at infinity.(37)

We note that µ is a gain a simple factor in this equation so that we only treat the case
µ = 1 below. This system is associated with the weak formulation:
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Find v ∈ Ḣ1
σ(R3) such that:

2µ

ˆ
R3

[(1 + Meff )(D(v) + A)] : ∇w = 0 , ∀w ∈ Ḣ1
σ(R3).

Since Meff has compact support, for ε0 sufficiently small we have that ‖Meff‖L∞(R3) ≤ 1/2
so that construction of a weak solution falls into the scope of the Lax-Milgram theorem.
Hence, under the assumption that ε0 is sufficiently small we have existence and uniqueness
of a uc satisfying

• vc(x) = (uc(x)− Ax) ∈ Ḣ1
σ(R3),

• there exists pc for which (36) holds true (in D′(R3)),

and consequently, the pressure pc exists and is unique up to a constant. We focus now – as
in the previous section for the problem in a perforated domain – on a possible expansion
of the solution uc in terms of ”powers of Meff”. Namely, for small ε0 the matrix Meff can
be seen as a perturbation of the identity so that one may look for a solution to (36)-(37)
by iterating the mapping v 7→ ṽ := Lv solving the system:{−div(D(ṽ)− pI3) = divMeff (D(v)) + divMeff (A)

divṽ = 0
in R3,

ṽ(x) = 0 at infinity,

starting form v(0)(x) = 0. Again, it is standard by introducing a weak formulation and
Lax-Milgram arguments that there exists a unique velocity-field ṽc satisfying

• ṽc ∈ Ḣ1
σ(R3)

• there exists a pressure p̃c such that{−div(D(ṽc)− p̃cI3) = divMeff (A)

divṽ = 0
in R3,

The main result of this section is the following proposition which compares the velocity-field
vc(x) = uc(x)− Ax with ṽc.

Proposition 4.1. Under the assumption that ε0 > 0 is sufficiently small, there exists a
constant C(K, ε0) such that

‖∇vc −∇ṽc‖L2(R3) ≤ C(K, ε0)‖Meff‖2L∞(R3)|A|.(38)

Proof. This proof is a straightforward application of fixed-point arguments. First, let prove
that the mapping L is a contraction on Ḣ1

σ(R). Indeed, for arbitrary (v1, v2) ∈ Ḣ1
σ(R3),

given the weak formulation for the Stokes problem, we have that w = L(v1 − v2) satisfies:ˆ
R3

D(w) : D(ϕ) =

ˆ
R3

[Meff (D(v1 − v2))] : D(ϕ) , ∀ϕ ∈ Ḣ1
σ(R3).

Setting w = ϕ and recalling that w is divergence-free we obtain thatˆ
R3

|∇w|2 = 2

ˆ
R3

|D(w)|2 ≤ 8‖Meff‖2L∞
ˆ
R2

|D(v1 − v2)|2 ≤ 4‖Meff‖2L∞
ˆ
R2

|∇v1 −∇v2|2.
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Consequently, fix ε0 < 1/8. Then ‖L‖ < 1/
√

2 and the mapping L is a contraction that
admits a unique fixed point. This yields a solution to (36)-(37). Furthermore, this solution
is obtained by iterating the mapping L from v(0) = 0. So the sequence v(n) = L◦nv(0)
converges to vc (in Ḣ1(R3)) while, by definition, ṽc = v(1). Similar energy estimates yield
that

(39) ‖∇ṽc‖L2(R3) ≤ |K|1/2‖Meff‖L∞(R3)|A|.
Standard arguments with contractions then yield that

‖∇ṽc −∇vc‖L2(R3) = ‖v(1) − lim v(n)‖Ḣ1(R3)

≤ ‖L‖
1− ‖L‖

‖v(1)‖Ḣ1(R3) ≤ 4|K|1/2‖Meff‖L∞(R3)‖Meff‖L∞(R3)|A|.

This concludes the proof. �

5. Proof of main result

We end the paper with a proof of Theorem 1.1. In the whole section, we assume that we
are given a perforated domain such that (H1)-(H2) hold true. We are also given Meff ∈
M(ε0) with simultaneously (a/d)3 < ε0 (see (H1)-(H2) for the definitions of a and d).
Restrictions on ε0 are introduced throughout the section. Finally, we fix a matrix A ∈
Sym3,σ(R).

We recall that Theorem 1.1 is a stability estimate between the solutions to two problems.
The first one is the Stokes problem in a perforated domain (2)-(3)-(4) that we studied in
Section 3. We restrict at first ε0 so that Proposition 3.2 holds true. We have then a

sequence of approximations (u
(n)
app)n∈N to the velocity-field uN(x) = Ax + vN(x) solution

to (2)-(3)-(4). The second problem is the continuous analogue (5)-(6) that we studied in
Section 4. We assume also that ε0 is sufficiently small so that Proposition 4.1 holds true.
We have then an approximation ũc(x) = Ax + ṽc(x) to the velocity-field uc solution to
(5)-(6).

The purpose of Theorem 1.1 is to compute a bound from above for uN −uc. To this end,

we fix n = 3 and uapp = u
(3)
app (with the notations of Proposition 3.2) and write

(40) uN − uc = (uN − uapp) + (uapp − ũc) + (ũc − uc) =: Rperf +Rmain +Rcont.

The two error terms Rperf and Rcont have been estimated previously in Proposition 3.2
and Proposition 4.1 respectively. So, we proceed in the next subsection with estimating
Rmain and shall combine the various partial results in the last subsection to complete the
proof of our theorem.

5.1. Computing Rmain. We recall that uapp = u
(3)
app is constructed via the method of

reflections:

uapp(x) = Ax+
3∑
j=1

( N∑
l=1

U [A
(j−1)
l , Bl](x− xl)

)
.
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By the definition of uapp and Proposition 2.2, we have the following decomposition, for any
x ∈ FN

uapp(x)− ũc(x) = R1(x) +R2(x),(41)

where

R1(x) :=
N∑
l=1

K[A,Bl](x− xl)− ṽc(x)

and

R2(x) :=
N∑
l=1

H[A,Bl](x− xl) +
∑
j=2,3

N∑
l=1

U [A
(j−1)
l , Bl](x− xl).

We start with computing R1 :

Proposition 5.1. Let K0 b R3 and p ∈ [1, 3/2[, there exists C(K0) for which:

(42) ‖R1‖Lp(K0\
⋃
B(xl,4a)) ≤ C(K0)

[
‖MN −Meff‖Ḣ−1(R3) +

(
a3

d3

)1+θ ]
,

where θ = 1
p
− 2

3
.

Proof. By Proposition 2.2, we know that each component of K can be written as:

K[A,Bl]i(x− xl) = M[A,Bl] : ∇U i(x− xl)
In this identity, we recall that M[A,Bl] = a3M[A,Bl], given by (19), and that U i =
(U i1, U i2, U i3) with

U ij := − 1

8π

[ δij
|x− y|

+
(xi − yi)(xj − yj)

|x− y|3
]

corresponding to the fundamental solution of Stokes equation in R3. According to the fact
that for any x ∈ R3 \ {0}

∆U i(x) = ∇qi
with qi(z) = 1

4π
z
|z|3 and applying Lemma A.1, we obtain that for any x ∈ K0 \

⋃
B(xλ, a)

and i = 1, 2, 3, for any l = 1, . . . , N :

K[A,Bl]i(x− xl) =
3

4π
M[A,Bl] :

ˆ
B(xl,a)

∇U i(x− y)dy

+
a3

3
M[A,Bl] :

ˆ a

0

(
r4

a3
− r
) 

B(xl,r)

∇2qi(x− y)dydr

We proceed by remarking that:

N∑
l=1

3

4π
M[A,Bl] :

ˆ
B(xl,a)

∇U i(x− y)dy =

ˆ
R3

MN(A)(y) : ∇U i(x− y)dy(43)
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Furthermore, since qi is harmonic on R3 \ {0}, for x ∈ K0 \
⋃
B(xλ, a) and l ∈ {1, . . . , N}

there holds:ˆ a

0

(
r4

a3
− r
)  

B(xl,r)

∇2qi(x− y)dydr =

ˆ a

0

(
r4

a3
− r
) 

B(xl,a)

∇2qi(x− y)dydr

= − 9

40πa

ˆ
B(xl,a)

∇2qi(x− y)dy.

(44)

On the other hand, by uniqueness of the solution to the Stokes problem defining ṽc (in
Ḣ1(R3)), we know that ṽc is computed with Green’s function for the Stokes problem. This
yield componentwise:

ṽc,i(x) =

ˆ
R3

Meff (A)(y) : ∇U i(x− y)dy, ∀x ∈ R3.

We note that this quantity is well-defined since Meff ∈ L∞(R3) has compact support and
∇U i is homogeneous of degree −2 so that it is Lploc(R3) for arbitrary p < 3/2. Eventually,
the i−th component of R1 can be rewritten as

R1,i(x) =

ˆ
R3

[MN −Meff ] (A)(y) : ∇U i(x− y)dy

− 3a2

40π

ˆ
R3

MN(A)(y) : 1|x−y|>3a∇2qi(x− y)dy,

since x /∈
⋃
B(xl, 4a). Concerning the first term on the right-hand side of this equality, let

denote h any component of [MN −Meff ] . By assumption, we have then h ∈ Ḣ−1(R3) so
that it can be written h = ∂1ϕ1 + ∂2ϕ2, where ϕ1 and ϕ are L2(R3) and

max
i=1,2
‖ϕi‖L2(R3) ≤ ‖h‖Ḣ−1(R3) ≤ ‖MN −Meff‖Ḣ−1(R3).

Therefore, we have on R3 :ˆ
R3

h(y)∂lU
ik(x− y)dy =

ˆ
R3

ϕ1(y)∂1lU
ik(x− y)dy +

ˆ
R3

ϕ2(y)∂2lU
ik(x− y)dy,

where, by Calderón Zygmund inequality, the right-hand side of this identity is well defined
and satisfies.

(45) ‖
ˆ
R3

h∂lU
ik(x− y)dy‖L2(R3) ≤ C‖MN −Meff‖Ḣ−1(R3).

As for the second term in R1,i we can apply a classical Young inequality for convolution
to obtain:

‖
ˆ
R3

MN(A)(y)∇2qi(x− y)dy‖Lp(R3) ≤ C‖MN(A)‖Lp(R3)‖
1|z|>3a

|z|4
‖L1(R3)

≤ C|A|
(a
d

) 3
p 1

a
.
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Finally, applying the embedding L2(K0) ⊂ Lp(K0), we have:

‖R1‖Lp(K0⊂
⋃
B(xl,4a)) ≤ C|A|

[
‖MN(y)−Meff (y)‖Ḣ−1(R3) + a

(a
d

) 3
p
.

]
We conclude by applying again that Nd3 ≤ |K| so that

a
(a
d

) 3
p ≤ (Na3)

1
3

(a
d

) 3
p ≤

[(a
d

)3] 1
p
+ 1

3

.

�

We proceed by computing error estimates for R2. This is the content of the following
proposition:

Proposition 5.2. Let K0 b R3 and p ∈ [1, 3/2[, there exists C(K,K0) for which:

(46) ‖R2‖Lp(K0\
⋃
B(xl,4a)) ≤ C(K,K0)

(
a3

d3

)1+θ

,

where θ = 1
p
− 2

3
.

Proof. We recall that

R2(x) =
N∑
l=1

H[A,Bl](x− xl) +
∑
j=2,3

N∑
l=1

U [A
(j−1)
l , Bl](x− xl)

=
∑
j=2,3

N∑
l=1

K[A
(j−1)
l , Bl](x− xl) +

3∑
j=1

N∑
l=1

H[A
(j−1)
l , Bl](x− xl).

Since Bl = aBl, by Proposition 2.2, we know that for any j = 1, 2, 3 and l = 1, . . . , N ,
when |x− xl| > 4a :

|K[A
(j−1)
l , Bl](x− xl)| ≤ C

a3|A(j)
l |

|x− xl|2
, |H[A

(j−1)
l , Bl](x− xl)| ≤ C

a4|A(j)
l |

|x− xl|3
.

Therefore, on K0 \
⋃
B(xl, 4a), we have:

|R2(x)| ≤ C
[
a3

N∑
l=1

|A(1)
l |+ |A

(2)
l |

|x− xl|2
+ a4

N∑
l=1

|A|
|x− xl|3

]
.
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Consequently, denoting K1 = K0 ∪K, we obtain

‖R2‖Lp(K0) ≤ Ca3
2∑
i=1

N∑
l=1

|A(i)
l |

(ˆ diam(K1)

a

dx

|x|2p

) 1
p

+Na4|A|
(ˆ ∞

a

dx

|x|3p

) 1
p

≤ C(K1)

(
a1+

3
p

2∑
i=1

N∑
l=1

|A(i)
l |+Na1+

3
p |A|

)

≤ C(K,K1)

(
a3

d3

)1+θ

|A|

where we applied Proposition 3.2 to pass from the second to the last line together with the
remark that Nd3 ≤ |K|. �

5.2. End of the proof. Let K0 b R3 containing K (for simplicity) and p ∈ [1, 3/2[. By
(40) we have

‖uN − uc‖Lp(K0) ≤ ‖Rperf‖Lp(K0) + ‖Rmain‖Lp(K0) + ‖Rcont‖Lp(K0).

Since p ≤ 6 and by the embedding Ḣ1(R3) ⊂ Lploc(R3) and Proposition 3.2, we have the
bounds

‖Rperf‖Lp(K0) ≤ C(K0)‖Rperf‖L6(R3) ≤ C(K0)‖uN − uapp‖Ḣ1(R3)

≤ C(ε0, K0)|A|
(
a3

d3

) 11
6

.

With a similar chain of inequalities, we obtain by applying Proposition 4.1

‖Rcont‖Lp(K0) ≤ C(K,K0, ε0)|A|‖Meff‖2L∞(R2).

Finally, concerning Rmain, we recall that we have simultaneously Rmain = uapp − ũc =
vapp − ṽc (where we denote vapp(x) = uapp(x) − Ax) and Rmain = R1 + R2, with the
notations of the previous subsection. This entails that:

‖Rmain‖Lp(K0) ≤ ‖uapp − ũc‖Lp(⋃B(xl,4a)) + ‖R1‖Lp(K0\
⋃
B(xl,4a)) + ‖R2‖Lp(K0\

⋃
B(xl,4a)).

The two last terms of the right-hand side are controlled respectively by (42) and (46):

(47) ‖R1‖Lp(K0\
⋃
B(xl,4a)) + ‖R2‖Lp(K0\

⋃
B(xl,4a))

≤ C(K,K0)|A|

[
‖MN −Meff‖Ḣ−1(R3) +

(
a3

d3

)1+θ
]

where θ = 1
p
− 2

3
. As for the first term, we first bound

‖uapp − ũc‖Lp(∪B(xl,4a)) ≤ |
⋃

B(xl, 4a)|
1
p
− 1

6 (‖vapp‖L6(R3) + ‖ṽc‖L6(R3)).

Here, it is straightforward from (39) that:

‖ṽc‖L6(R3) ≤ C(K)|A|‖Meff‖L∞(R3).
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As for uapp, we have, by Proposition 3.2 and uniform estimate (18) that:

‖vapp‖L6(R3) ≤ C‖∇vapp‖L6(R3) ≤ C
(
‖∇vapp −∇vN‖L2(R3) + ‖∇vN‖L2(R3)

)
≤ C|A|

(
a3

d3

) 1
2

.

Via a straightforward bound on the volume of the B(xl, 4a) we conclude that:

(48) ‖uapp − ũc‖Lp(⋃B(xl,4a)) ≤
(
a3

d3

) 1
p
− 1

6

((
a3

d3

)1/2

+ ‖Meff‖L∞(R3)

)
|A|.

Combining (47) and (48) yields

(49) ‖Rmain‖Lp(K0)

≤ C(K,K0, ε0)|A|

[
‖MN −Meff‖Ḣ−1(R3) +

(
a3

d3

)1+θ

+ ‖Meff‖2L∞(R3)

]
,

since, as p < 3/2, we have 2/p− 1/3 > 1 + θ = 1/p+ 1/3.

Finally, we have proven:

‖uN − uc‖Lp(K0)

≤ C(K,K0, ε0)|A|

[
‖MN [A]−Meff [A]‖Ḣ−1(R3) +

(
a3

d3

)1+θ

+ ‖Meff‖2L∞(R3)

]
.

This concludes the proof.
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Appendix A. Tools for the method of reflections

In this appendix, we give some technical tools that are involved in the method of re-
flections. We start with a representation formula generalizing the mean-value formula for
harmonic functions.

Lemma A.1. Suppose that f ∈ L1
loc(R3). Let D be a domain in R3 and ∆u = f in D.

Then for arbitrary x ∈ D and r > 0 such that B(x, r) ⊂ D we have:

u(x) =

 
B(x,r)

u(y)dy +
1

3

ˆ r

0

(
ρ4

r3
− ρ
) 

B(x,ρ)

f(y)dydρ.
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Proof. This lemma must be part of the folklore. We give a proof for completeness. Let

φ(r) =

 
∂B(x,r)

u(y)dσ(y) =
1

4π

ˆ
∂B(0,1)

u(x+ z)dσ(z).

After differentiation and integration by parts, we obtain:

φ′(r) =
1

4πr2

ˆ
∂B(x,r)

∂nu(y)dσ(y) =
r

3

 
B(x,r)

f(y)dy.

Since φ(r)→ 0 when r → 0 we infer that:

φ(r) = u(x) +

ˆ r

0

ρ

3

 
B(x,ρ)

f(y)dydρ, if B(x, r) ⊂ D.

Then, if B(x, r) ⊂ D we have: 
B(x,r)

u(y)dy =
1

r3

ˆ r

0

3ρ2φ(ρ)dρ.

Integrating by parts and applying the formula we derived above for φ(r) and φ′(r), we
obtain: 

B(x,y)

u(y)dy =
1

r3

[
r3φ(r)−

ˆ r

0

ρ3φ′(ρ)dρ

]
=

(
u(x) +

ˆ r

0

ρ

3

 
B(x,ρ)

f(y)dydρ

)
− 1

r3

ˆ r

0

ρ4

3

 
B(x,ρ)

f(y)dydρ.

This concludes the proof. �

Relying on this formula, we analyze the behavior of the recursive formula for the method
of reflections (26). We recall that we consider here a set of centers of mass (x1, . . . , xN)
and parameters a, ε0 such that a3/d3 < ε0 where d = mini 6=j |xi − xj|. We include the
recursive formula in the following more general framework. We assume we are given V ∈
C∞(R3\{0}) homogeneous of degree −1 and we suppose that ∆V = Q where Q is harmonic
in R3 \ {0} and homogeneous with degree −3. We look then at quantities of the form

(50) Wl,α := a3
∑
l 6=λ

mλ∂
αV (xl − xλ) ∀ l = 1, . . . , N.

where (m1, . . . ,mN) are given and arbitrary and α is a multi-index in N3. The crucial result
underlying the method of reflections is the following lemma:

Lemma A.2. Let ε0 small and 1 < q < ∞. Then, there exists a constant C(q, ε0) such
that the following properties hold true:

(1) if |α| = 2, then( N∑
l=1

|Wl,α|q
)1/q
≤ C(q, ε0

)(a
d

)3−3/q( N∑
l=1

|ml|q
)1/q

,



EFFECTIVE VISCOSITY OF A POLYDISPERSED SUSPENSION 29

(2) if |α| = 1 and we denote Fl(x) :=
∑

l 6=λmλ∇V (x− xλ) on B(xl, 2a), there holds:

N∑
l=1

‖∇Fl‖2L2(B(xl,2a))
≤ C(2, ε0)

d3

N∑
l=1

|ml|2.(51)

Proof. We split the proof into two parts corresponding to the two items in the lemma.

Part 1. This part is the proof of the first statement of the above lemma. By definition
of Q, we notice that ∆∂αV = ∂αQ in R3 \ {0}. Hence according to Lemma A.1 and the
fact that ∂αQ is harmonic in R3 \ {0}, we obtain that

Wl,α = W 1
l,α +W 2

l,α +W 3
l,α,

where

W 1
l,α := a3

 
B(xl,a)

(∑
l 6=λ

 
B(xλ,d/2)

mλ∂
αV (y − z)dz

)
dy,

W 2
l,α :=

a3

3

ˆ a

0

(
r4

a3
− r
)(∑

l 6=λ

 
B(xl,r)

mλ∂
αQ(y − xλ)dy

)
dr

and

W 3
l,α :=

a3

3

 
B(xl,a)

(∑
l 6=λ

ˆ d
2

0

(
8r4

d3
− r
)  

B(xλ,r)

mλ∂
αQ(y − z)dzdr

)
dy.

For the next computations, we introduce:

Φ(x) :=
N∑
l=1

ml1B(xl,d/2)(x)(52)

and fix q ∈ (1,∞).
Step 1. In this part we deal with W 1

l,α. By definition, we have that

W 1
l,α =

9

2π2d3

ˆ
B(xl,a)

ˆ
R3\B(xl,d/2)

Φ(z)∂αV (y − z)dzdy.

In order to apply Calderón-Zygmund inequality, we split the above quantity into two parts:
W 1
l,α = Cl,α +Rl,α, where

Cl,α :=
9

2π2d3

ˆ
B(xl,a)

ˆ
R3\B(y,d/2)

Φ(z)∂αV (y − z)dzdy,

Rl,α :=
9

2π2d3

ˆ
B(xl,a)

(ˆ
R3\B(xl,d/2)

−
ˆ
R3\B(y,d/2)

)
Φ(z)∂αV (y − z)dzdy.

We note that for any y ∈ R3,ˆ
R3\B(y,d/2)

Φ(z)∂αV (y − z)dz =

ˆ
R3\B(0,d/2)

Φ(y − z)∂αV (z)dz := Gα(y),
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which implies that

Cl,α =
9

2π2d3

ˆ
B(xl,a)

Gα(y)dy.

Therefore, we have: ∣∣Cl,α∣∣ ≤ Ca3−3/qd−3‖Gα‖Lq(B(xl,a)),

and ( N∑
l=1

∣∣Cl,α∣∣q)1/q ≤ Ca3−3/qd−3‖Gα‖Lq(R3).

On the other hand, by Calderón-Zygmund inequality we have:

‖Gα‖Lq(R3) ≤ C(q)‖Φ‖Lq(R3) ≤ C(q)d
3
q

( N∑
l=1

|ml|q
)1/q

.

Hence we obtain that:( N∑
l=1

∣∣Cl,α∣∣q)1/q ≤ C(q)
(a
d

)3−3/q( N∑
l=1

|ml|q
)1/q

.(53)

Now we turn to deal with Rl,α. At first, we notice that for any l = 1, . . . , N and
x ∈ B(xl, a), there holds:

B(x, d/2)4B(xl, d/2) ⊂ B(x, d/2 + a) \B(x, d/2− a),

(where4 represents the symmetric difference between sets). Since ∂αV is−3-homogeneous,
this implies that for any y ∈ B(xl, a), we have:∣∣∣(ˆ

R3\B(xl,d/2)

−
ˆ
R3\B(y,d/2)

)
Φ(z)∂αV (y − z)dz

∣∣∣ ≤ ˆ
B(y,d+2a)\B(y,d−2a)

∣∣Φ(z)
1

|y − z|3
∣∣dz.

We denote Ḡα(y) the right-hand side of this inequality. Again by Hölder inequality, we
obtain that ∣∣Rl,α

∣∣ ≤ Ca3−3/qd−3‖Ḡα‖Lq(B(xl,a)),

and ( N∑
l=1

∣∣Rl,α

∣∣q)1/q ≤ Ca3−3/qd−3‖Ḡα‖Lq(R3).

On the other hand, by a standard Young inequality for convolution, we have

‖Ḡα‖Lq(R3) =
∥∥∥ˆ

R3

|Φ(· − z)|
1B(0,d+2a)\B(0,d−2a)(z)

|z|3
dz
∥∥∥
Lq(R3)

≤ C ln
(d+ 2a

d− 2a

)
‖Φ‖Lq(R3) ≤ C ln

(d+ 2a

d− 2a

)
d3/q

( N∑
l=1

|ml|q
)1/q

.
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Therefore we obtain that( N∑
l=1

∣∣Rl,α

∣∣q)1/q ≤ C ln
(d+ 2a

d− 2a

)(a
d

)3−3/q( N∑
l=1

|ml|q
)1/q

.(54)

By combing (53) and (54), we obtain finally that,( N∑
l=1

∣∣W 1
l,α

∣∣q)1/q ≤ C(q)
(

1 + ln
(d+ 2a

d− 2a

))(a
d

)3−3/q( N∑
l=1

|ml|q
)1/q

.(55)

Step 2. Now we turn to handle W 2
l,α. We recall that

W 2
l,α =

a3

3

ˆ a

0

(
r4

a3
− r
)(∑

l 6=λ

 
B(xl,r)

mλ∂
αQ(y − xλ)dy

)
dr.

Since ∂αQ is harmonic outside B(0, a), we have for each λ 6= l and r < a, 
B(xl,r)

mλ∂
αQ(y − xλ)dy =

 
B(xl,a)

 
B(xλ,d/2)

mλ∂
αQ(y − z)dzdy,

which implies that∑
l 6=λ

 
B(xl,r)

mλ∂
αQ(y − xλ)dy =

∑
l 6=λ

 
B(xl,a)

 
B(xλ,d/2)

mλ∂
αQ(y − z)dzdy

=
9

2π2a3d3

ˆ
B(xl,a)

ˆ
R3\B(xl,d/2)

Φ(z)∂αQ(y − z)dzdy.

We also notice that ∣∣Φ(z)∂αQ(y − z)
∣∣ ≤ C|Φ(z)| 1

|y − z|5
.

Therefore we obtain that∣∣W 2
l,α

∣∣ ≤ Cd−3
ˆ a

0

rdr

ˆ
B(xl,a)

ˆ
R3\B(xl,d/2)

|Φ(z)| 1

|y − z|5
dzdy.

By a similar argument as before, we obtain that∣∣W 2
l,α

∣∣ ≤ Ca2d−3
ˆ
B(xl,a)

ˆ
R3\B(y,d/2−a)

|Φ(z)| 1

|y − z|5
dzdy

≤ a5−3/qd−3
∥∥ˆ

R3\B(0,d/2−a)
|Φ(· − z)| 1

|z|5
dz
∥∥
Lq(B(xl,a))

,

which implies that, since a3/d3 < ε0 << 1:(∑
l=1

∣∣W 2
l,α

∣∣q)1/q ≤ Ca5−3/qd−3
∥∥ˆ

R3\B(0,d/2−a)
|Φ(· − z)| 1

|z|5
dz
∥∥
Lq(R3)

≤ C(q, ε0)
(a
d

)5− 3
q

( N∑
l=1

|ml|q
)1/q

.

(56)
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Step 3. At last we deal with W 3
l,α. We recall that

W 3
l,α =

a3

3

 
B(xl,a)

(∑
l 6=λ

ˆ d
2

0

(
8r4

d3
− r
)  

B(xλ,r)

mλ∂
αQ(y − z)dzdr

)
dy.

Again by the fact that ∂αQ is harmonic in R3 \ {0} for any |α| = 2, we obtain that for
y ∈ B(xl, a), l 6= λ and r < d/2: 

B(xλ,r)

mλ∂
αQ(y − z)dz =

 
B(xλ,d/2)

mλ∂
αQ(y − z)dz.

By a similar argument as in step 2, we obtain that∣∣W 3
l,α

∣∣ ≤ Cd−3
ˆ
B(xl,a)

ˆ d/2

0

rdr
∑
l 6=λ

ˆ
B(xλ,d/2)

|Φ(z)| 1

|y − z|5
dzdy

≤ Cd−1
ˆ
B(xl,a)

∑
l 6=λ

ˆ
B(xλ,d/2)

|Φ(z)| 1

|y − z|5
dzdy

≤ Cd−1
ˆ
B(xl,a)

ˆ
R3\B(y,d/2−a)

|Φ(z)| 1

|y − z|5
dzdy

≤ Ca3−3/qd−1
∥∥ˆ

R3\B(0,d/2−a)
|Φ(· − z)| 1

|z|5
dz
∥∥
Lq(B(xl,a))

,

and we conclude that:(∑
l=1

∣∣W 3
l,α

∣∣q)1/q ≤ Ca3−3/qd−1
∥∥ˆ

R3\B(0,d/2)

|Φ(· − z)| 1

|z|5
dz
∥∥
Lq(R3)

≤ C(q)
(a
d

)3− 3
q

( N∑
l=1

|ml|q
)1/q

.

(57)

By combining (55), (56) and (57), we obtain the expected result since a/d < ε0 << 1:

( N∑
l=1

∣∣∣Wl,α

∣∣∣q)1/q ≤ ( N∑
l=1

∣∣∣W 1
l,α

∣∣∣q)1/q +
( N∑
l=1

∣∣∣W 2
l,α

∣∣∣q)1/q +
( N∑
l=1

∣∣∣W 3
l,α

∣∣∣q)1/q
≤ C(q, ε0)

(a
d

)3− 3
q
( N∑
l=1

|ml|q
)1/q

.

The first statement of the lemma is proved.

Part 2. In this part we give a proof for the second item. By definition of Fl and Lemma
A.1, we have that for any x ∈ B(xl, 2a)

Fl(x) =
∑
l 6=λ

mλ

 
B(xλ,d/2)

∇V (x− y)dy +
1

3

∑
l 6=λ

mλ

ˆ d
2

0

(
8r4

d3
− r
)  

B(xλ,r)

∇Q(x− y)dydr.
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According to the fact that Q is harmonic outside the origin, the second term on the right
side of the above equation can be written as

∑
l 6=λ

mλ

ˆ d
2

0

(
8r4

d3
− r
)  

B(xλ,r)

∇Q(x− y)dydr

=
∑
l 6=λ

mλ

ˆ d
2

0

(
8r4

d3
− r
) 

B(xλ,d/2)

∇Q(x− y)dydr

=
33

40πd

∑
l 6=λ

mλ

ˆ
B(xl,d/2)

∇Q(x− y)dy,

for any x ∈ B(xl, 2a). Therefore for any x ∈ B(xl, 2a), we have:

Fl(x) =
6

πd3

ˆ
R3\B(xl,d/2)

Φ(y)∇V (x− y)dy +
11

40πd

ˆ
R3\B(xl,d/2)

Φ(y)∇Q(x− y)dy,

where Φ is defined in (52).

Now we start to prove (51). By the above argument and since the B(xl, 2a) are disjoint,
we have

(58)
N∑
l=1

‖∇Fl‖2L2(B(xl,2a))
≤ C

1

d6

∑
|α|=2

N∑
l=1

‖
ˆ
R3\B(xl,d/2)

Φ(y)∂αV (· − y)dy‖2L2(B(xl,2a))

+
1

d2

∑
|α|=2

N∑
l=1

‖
ˆ
R3\B(xl,d/2)

Φ(y)∂αQ(· − y)dy‖2L2(B(xl,2a))
.

In order to control the right-hand side of the above inequality, we first notice that for each
l = 1, . . . , N, any |α| = 2 and x ∈ B(xl, 2a) :

ˆ
R3\B(xl,d/2)

Φ(y)∂αV (x− y)dy =

ˆ
R3\B(0,d/2)

Φ(x− y)∂αV (y)dy

+
(ˆ

R3\B(xl,d/2)

−
ˆ
R3\B(x,d/2)

)
Φ(y)∂αV (x− y)dy.

By similar arguments as in Part 1 of the proof, we obtain that

∑
|α|=2

N∑
l=1

‖
ˆ
R3\B(0,d/2)

Φ(· − y)∂αV (y)dy‖2L2(B(xl,2a))
≤ Cd3

N∑
l=1

|ml|2
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and ∑
|α|=2

N∑
l=1

‖
( ˆ

R3\B(xl,d/2)

−
ˆ
R3\B(x,d/2)

)
Φ(y)∂αV (x− y)dy‖2L2(B(xl,2a))

≤C
∣∣∣∣ln(d+ 2a

d− 2a

)∣∣∣∣2 d3 N∑
l=1

|ml|2

Therefore we have

(59)
∑
|α|=2

N∑
l=1

‖
ˆ
R3\B(xl,d/2)

Φ(y)∂αV (· − y)dy‖2L2(B(xl,2a))

≤ Cd3

(
1 +

∣∣∣∣ln(d+ 2a

d− 2a

∣∣∣∣2)
)

N∑
l=1

|ml|2.

Now we turn to deal with the second term of the right side of (58). We first notice that
for any |α| = 2, l = 1, . . . , N and x ∈ B(xl, 2a), there holds:∣∣∣ ˆ

R3\B(xl,d/2)

Φ(y)∂αQ(x− y)dy
∣∣∣ ≤ C

ˆ
R3

|Φ(y)|
1|x−y|>d/2−2a
|x− y|5

dy,

Since a3/d3 < ε0 << 1 we obtain via a standard Young inequality for convolutions that∑
|α|=2

N∑
l=1

‖
ˆ
R3\B(xl,d/2)

Φ(y)∂αQ(· − y)dy‖2L2(B(xl,2a))
≤ C(ε0)d

−1
N∑
l=1

|ml|2.(60)

Finally, combining (58), (59) and (60) and remarking that d ≤ diam(K), we have that

N∑
l=1

‖∇Fl‖2L2(B(xl,2a))
≤ C(ε0)d

−3
N∑
l=1

|ml|2.

This ends the proof of the second item and the proof of the lemma. �
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