
DERIVATION OF THE STOKES-BRINKMAN PROBLEM AND
EXTENSION TO THE DARCY REGIME.

M. HILLAIRET

Abstract. In this note, we consider the derivation of continuum models for the inter-
actions between a cloud of particles and a viscous fluid. We review recent results on the
derivation of so-called Stokes-Brinkman models. We give some insights into analytical
tools that are required for such results and discuss a possible extension to the Darcy
regime.

1. Introduction

In this note, we review results computing the asymptotics of the Stokes system in perfo-
rated domains when the number of holes in the domain goes to infinity while their radius
goes to 0 with an appropriate scaling. Precisely, we fix Ω a smooth bounded domain of R3

and consider (u, p) the solution to:

(1)

{−∆u+∇p = 0

divu = 0
in F := Ω \

N⋃
i=1

Bi.

Here the Bi represent the holes in Ω. We complement the problem with boundary condi-
tions:

(2)

{
u = Vi on ∂Bi for i = 1, . . . , N,

u = 0 on ∂Ω

where (V1, . . . , VN) ∈ [R3]N are prescribed vectors. This problem can be seen as a model for
computing the instantaneous response of a viscous fluid to the linear motion of a cloud of
N immersed particles. For this reason, below we name Bi the ”particles” and we assume
the Bi lie in a bounded subdomain K ⊂ Ω. However, we point out that the problem
is stationary so that the ”motion” of the particles is modeled here merely as non-zero
boundary conditions.

When N is fixed and the Bi do not overlap nor intersect ∂Ω, existence and uniqueness of
a solution to system (1) completed with boundary conditions (2) is a standard issue. We
recall here briefly the principle facts and refer the reader to [12] for more details. First, we
can reduce (1)-(2) to a weak formulation satisfied by the velocity field u. Introducing the
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Figure 1. A 2D example of a typical configuration and notations : in blue
the fluid domain, in white the particles, in red safety-spheres – centered in
a particle and with radius dmin ∼ λminN

−1/3/2– surrounding particles. For
simplicity we draw euclidean safety-spheres.

function space D(F) containing the restrictions of divergence-free H1
0 (Ω) vector fields to

F , this weak-formulation reads:

Find u ∈ D(F) such that u = Vi on ∂Bi for i = 1, . . . , N and

(3)

∫
F
∇u : ∇w = 0

for all w ∈ D(F) that vanish on ∂F .
Standard arguments yield that there exists a unique such u and that it is characterized

by minimizing: ∫
F
|∇u|2

among the vector fields w ∈ D(F) matching the same boundary conditions Vi on the ∂Bi.
This property is actually general to any family of boundary conditions on the ∂Bi (possibly
not constant but flux-free). The pressure p is then recovered as the Lagrange-multiplier of
the divergence-free constraint. We tackle here the behavior of the velocity field u when N
is large.
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The results we detail below are highly sensitive to several geometrical parameters. We
shall restrict herein to the simple case in which the particles are spherical and well-
separated. Namely, we assume there exists (h1, . . . , hN) ∈ [R3]N and R > 0 so that
Bi = B(hi, R). We ensure the particles are well-separated by assuming:

(H0) hi ∈ K for i = 1, . . . , N,
(H1) there exists λmin > 0 such that

dmin := min
i=1,...,N

{min{|hi − hj|∞, i 6= j}, d∞(hi, ∂Ω)} > λmin/N
1/3.

We draw an example in Figure 1. We recall that K is the domain occupied by the cloud
of particles. It is fixed a priori. The notations with index ∞ denote distances for the `∞

norm on R3. We keep notations | · | for the classical euclidean norm of vectors in R3 (and
Lebesgue measure for sets). We denote by C the set of center families h := (h1, . . . , hN)
satisfying assumptions (H0)-(H1). We note that this set contains families with an arbitrary
large (but finite) number of centers and that it depends on the parameters K,λmin. Since
these parameters are fixed throughout the paper, we do not add them to specify the symbol
C for legibility.

A geometry for solving (1)-(2) (which we call below ”a configuration”) is then completly
determined by choosing a family of centers in C – which fixes implicitly the number of
particles N – and a radius R. Since the value of R is restricted so that there is no overlap
between the particles and between the particles and ∂Ω, we shall see below R as a function
of the chosen center family in C. We will however call implicitly the choice of the mapping
h 7→ R by simply stating that ”a radius R is chosen”. Given a configuration, we fix
a solution (u, p) to (1)-(2) by picking boundary data (V1, . . . , VN). Again, we regroup the
boundary data into a vector denoted by V whose length can be arbitrary large but matches
the length of the vector h.

In Section 3 we assume the radius is chosen so that R 6 r0/N for some fixed parameter
r0 > 0. In this case, we introduce a description of the discrete set of particles and velocities
via the functions:

ρd = R
N∑
i=1

1

|B̃i|
1B̃i

, jd = R
N∑
i=1

1

|B̃i|
1B̃i

Vi,

where B̃i = B∞(hi, λminN
−1/3/2). When N is sufficiently large, the condition R 6 r0/N

implies that Bi ⊂ B̃i for all i. Under this condition, we want also to replace these functions
by continous descriptions of the cloud density ρ : Ω→ [0,∞) and momentum j : Ω→ R3

respectively. Indeed, it is expected (see [3]) that the solution (u, p) should be close to the
solution (v, q) to a Stokes system with a relaxation term between the particle momentum
and a virtual fluid momentum computed with respect to the particle density. This system,
that we call Stokes-Brinkman, reads:

(4)

{−∆v +∇q = 6π(j − ρv)

divv = 0
in Ω,
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with Dirichlet boundary condition:

(5) v = 0 on ∂Ω.

In practice ρ and j should be continuous on K, it should also vanish outside K and
could admit discontinuities on ∂K. We actually simply fix the ”regularity” of ρ and j
via integrability conditions. Indeed, under the assumption that the configuration is well-
separated (h ∈ C and R 6 r0/N) we have an a priori bound above for ‖ρd‖L∞(Ω). Hence we
restrict to the case ρ ∈ L∞(Ω). Similarly, we will typically assume a bound for boundary
data V such as:

(6) ‖V‖2
`2 :=

1

N

N∑
i=1

|Vi|2 6M.

Correspondingly, we have a bound for jd in L2(Ω) and we restrict to the case j ∈ L2(Ω).

Under the restriction (ρ, j) ∈ L∞(Ω) × L2(Ω) with ρ > 0, existence and uniqueness of
a solution to (4)-(5) is also standard. Like for the Stokes problem, we recall that (v, q) is
constructed by introducing at first a weak-formulation satisfied by v. Introducing D(Ω)
the set of divergence-free vector fields in H1

0 (Ω), this weak-formulation reads:

Find v ∈ D(Ω) such that:

(7)

∫
R3

∇v : ∇w + 6πρu · w = 6π

∫
R3

j · w,

for all w ∈ D(Ω).

Standard Lax-Milgram arguments yield existence and uniqueness of a v solution to this
weak formulation. The pressure q is then recovered as the Lagrange-multiplier of the
divergence-free constraint.

To compare v with u we extend u by the value Vi on Bi for i = 1, . . . , N. We do not
change the symbol for legibility. It is then clear that u ∈ D(Ω) and

‖∇u‖L2(Ω) = ‖∇u‖L2(F).

With these conventions, our main result reads:

Theorem 1. There exists a constant C(Ω, λmin, r0) depending only on Ω, λmin, r0 such
that, if N is sufficiently large:

(8) ‖u− v‖L2(Ω) 6 C(Ω, λmin, r0)(‖ρ‖L∞(Ω) + 1) . . .

. . .

(
‖V‖`2
N1/6

+ ‖j − jd‖(H2(Ω)∩H1
0 (Ω))∗ + ‖ρ− ρd‖H−1(Ω)‖V‖`2

)
.

We propose an extensive proof in Section 3 relying on a good interpretation of the weak
formulation satisfied by u. This novel interpretation is presented in Section 2. Our proof
of Theorem 1 is directly adapted from [12, 14, 16].

The content of Theorem 1 enables to address the limit of the sequence of weak solutions
u(N) to (1)-(5) associated with N -particle configurations hN in C, radius R(N) = r0/N
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and boundary data V(N) satisfying uniformly (6). In this framework, the inequality (8)
yields a quantified version of the convergence of u(N) toward the weak solution v to the
Stokes-Brinkman problem with corresponding density and momentum. In the case of
well-separated configurations that we consider here, it extends [5] which adapts previous
results in [1] for the homogeneous case. In [12], we consider an analogous convergence
problem for more general configurations for which the distance between two particles is
infinitly larger than their radius and there is no concentration of the particles in subsets.
This other result enables to tackle a random distribution of particles, see [4]. Similar
computations are also provided for particles with arbitrary shapes in [14]. The quantified
version of the convergence that we provide here is inspired of [16]. Analogous results are
also obtained in the case Ω = R3 by using a specific representation of the solution via a
”method of reflections” [15]. These convergence results in the Brinkman regime are also
complemented and related to Einstein’s problem for the computation of effective viscosity
in [6].

In [5], the authors mention in the introduction that the condition (6) is the good scaling
for boundary data V to yield the Stokes-Brinkman problem because the radius of particles
scales like 1/N. However, the situation where we choose a larger radius R is left open. In
particular, how to scale boundary data to extend the results in the Darcy regime of [2]
(which is obtained in case V vanishes and the system is forced by a volumic force) is left
open. This is the question that we tackle in the following.

In Section 4, we show that the new interpretation of the weak-formulation satisfied
by u in Section 2 enables to tackle the case of arbitrary large choices for R. Namely, we
assume the choice of radius satisfies:

(9)
r0

N
6 R 6

λmin
4N1/3

,

for some r0 > 0 and when N is sufficiently large so that such a condition is not contradic-
tory. We note that, with this choice, there still holds that Bi ⊂ B̃i for all i. To state our
result, we fix a target velocity field v : Ω → R3 for the fluid such that v ∈ L2(Ω). Corre-
spondingly, we introduce functions encoding the discrete set of velocities Vi and particles.
Precisely, we set:

(10) ṽd(x) =
N∑
i=1

Vi1B̃i
, ρ̃d(x) =

N∑
i=1

1B̃i
.

We note that, ρ̃ ∈ L∞(Ω) and that, since the B̃i are disjoint, there holds:

‖ṽd‖L2(Ω) 6 C(λmin)‖V‖`2 .

We obtain the following result:
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Theorem 2. With the assumption (9) and the construction (10), let denote ũ =
√
ρ̃du.

Then, there exists a constant C(Ω, λmin, r0) depending only on Ω, λmin, r0 such that:

‖v − ũ‖[H3(Ω)∩D(Ω)]∗ 6 C(Ω, λmin, r0)

(
‖v − ṽd‖[H3(Ω)∩D(Ω)]∗ +

√
RN

N1/3
+

1√
RN

)
‖V‖`2 .

The inequality of Theorem 2 means simply that, for arbitrary w ∈ H3(Ω) ∩D(Ω) :∣∣∣∣∫
Ω

(v − ũ) · w
∣∣∣∣ 6 C(Ω, λmin, r0)

(
‖v − ṽd‖[H3(Ω)∩D(Ω)]∗ +

√
RN

N1/3
+

1√
RN

)
‖V‖`2‖w‖H3(Ω).

Several remarks are in order. First, we point out that ρ̃d is an indicator function so
that

√
ρ̃d = ρ̃d. We can then define indifferently ũ = ρ̃du. We note also that, in case

the particles are distributed periodically in a cube K, and λmin is chosen as large as
possible, we have that ρ̃d = 1K + rem with ‖rem‖L1(Ω) 6 1/N1/3. We may even have
rem = 0 if the particles are well-centered in K. In this periodic well-centered case, we
can thus interpret ũ as the restriction of u to K and our result extends to the case of
non-vanishing boundary conditions the content of [2, Section 3] (see also more recently [11]
when particles are distributed randomly). Going through the proof, it is possible to gain
a little on the dual space in which we measure our distance. A priori, we use mostly that
w ∈ W 1,6(Ω) ∩ C0,1(Ω̄). We consider the space H3(Ω) to ensure this property in a Hilbert
setting. We point out that we test on divergence-free functions w so that the result of
Theorem 2 gives an information on v− ũ up to the addition of the gradient of a pressure
only. This has to be expected since we might have ũ = u in which case it is divergence-free,
while v (or ṽd) need not be.

Like for the Brinkman regime, the content of Theorem 2 enables to address the limit
of the sequence of weak solutions u(N) to (1)-(5) associated with N -particle configurations
h(N) in C and boundary data V(N) satisfying uniformly (6) in case the radius R(N) satisfy:

R(N) =
rsc
Nα

for some rsc > 0, and α ∈ [1/3, 1]. When α = 1, we see that we do not obtain a better
estimate than an error term of order 1/

√
rsc. This could be expected since we do know

already with Theorem 1 a more precise approximation to u(N). When α ∈ (1/3, 1) the
remainder vanishes when N diverges. Our result then implies that the velocity-field pre-
scribed by the particles spreads in the fluid. When α = 1/3, the situation is more involved.
The remainder does not go to 0 when N diverges but it can be made as small as desired
choosing rsc sufficiently small and N sufficiently large. For instance, we can apply our
computations to the case where the data V are fixed implicitly by requiring that the forces
on the particles vanish. This kind of boundary conditions is proposed by Einstein in order
to compute the effective viscosity of a mixture fluid+particles . Thus, this direction should
yield an alternative derivation of the effective vicosity formula (see [13, 7] and also [8, 9, 10]
and references therein). But the way the implicit computations of the Vi interacts with
the limit N →∞ has still to be explored.
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To end up this introductory section, we give below a list of main notations and recall
that we use mainly the euclidean norm | · | on R3 and the `∞ distance that we identify with
the subscript ∞. In particular, the distance d∞ and the balls B∞ are constructed wrt the
`∞ distance. Finally, like in our main results, we use throughout the paper notations C
for generic constants. These constants may vary between lines. If necessary, we point out
the important dependencies in parenthesis.

Ω,F , K : container, fluid domain, cloud,

Bi, B̃i : particle i, safety-cube surrounding particle i,
N,R, hi : number of particles, radius of particles, center of particle i,

Vi,V : boundary condition on particle i, list of boundary conditions,
ρ, ρd, ρ̃d : density of the cloud of particles and discrete counterparts,

j, jd : particle momentum and discrete counterpart.

D(Ω) : space of H1
0 (Ω) divergence-free vector fields

D(F) : restriction of vector fields in D(Ω) to F .
Table 1. Main notations

The paper is organized as follows. The next section is devoted to a key technical lemma
that is central to our main results. Section 3 is then devoted to the Brinkman regime
in which R 6 r0/N for some constant r0 > 0. In this case we recover Theorem 1. This
part is mostly a rewriting of previous approaches on the topic. The last section is devoted
to the Darcy regime in which R > r0/N for some constant r0 > 0 and we detail the
proof of Theorem 2. This part is completly new to our knowledge and extend previous
computations in the Darcy regime to the case of a moving porous medium (the particles
in our case).

Acknowledgement. The author would like to thank D. Gérard-Varet, R. M. Höfer and
the anonymous referee for many suggestions to improve previous versions of the paper.

2. A key preliminary lemma

In this first section, we prove a technical result that is at the heart of the following
computations. This result applies to general configurations since we shall only assume
that h ∈ C and that R is chosen so that:

(11) B(hi, 2R) ⊂ B(hi, λminN
−1/3/4) ∀ i = 1, . . . , N.

The main result of this section reads then:

Lemma 3. Assume that (11) holds true and denote by u the unique weak solution to (1)-
(2) associated with data V. Then, there exists a linear mapping err ∈ [H2(Ω) ∩ H1

0 (Ω)]∗

satisfying:
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i) the bound:

‖err‖[H2(Ω)∩H1
0 (Ω)]∗ 6 C(Ω, λmin)RN2/3‖∇u‖L2(Ω),

ii) for any w ∈ H2(Ω) ∩D(Ω), setting:

w̄i =
1

|Bi|

∫
Bi

w(x) and ũi =
1

|B̃i|

∫
B̃i

u(x), ∀ i = 1, . . . , N,

there holds:

(12)

∫
Ω

∇u : ∇w = 6πR
N∑
i=1

w̄i · (Vi − ũi) + 〈err, w〉.

What remains of this section is devoted to the proof of this lemma. For this, we need
the solution (UR[V ],PR[V ]) to the Stokes equations outside one particle of radius R in R3:

UR[V ](x) = ∇×
[(

3R

2|x|
− R3

2|x|3

)
V × x

2

]
and PR[V ](x) =

3RV

2
· ∇
(

1

|x|

)
.

We mean that (UR,PR) is a solution to{
−∆UR[V ] +∇PR[V ] = 0 in R3 \B(0, R)

div UR[V ] = 0 in R3 \B(0, R)

with boundary conditions:

UR[V ](x) = V on ∂B(0, R) and lim
|x|→∞

UR[V ](x) = 0.

We also recall one particular algebraic property (known as Stokes formula for the drag):

(13)

∫
∂B(0,R)

∂nUR[V ](x)− PR[V ](x)ndσ = 6πRV,

where n stands for the normal to ∂B(0, R) directed towards the interior of B(0, R). We
keep this convention for normal vectors to spheres in what follows. Usually, this formula is
written with the symmetric-gradient of UR. But, both formulas coincide because UR[V ] is
divergence-free and constant on ∂B(0, R). As a straightforward consequence, we mention
that, since the Stokes equations state the conservation of normal stress we have also that:

(14)

∫
∂B∞(0,R̃)

∂nUR[V ](x)− PR[V ](x)ndσ = 6πRV, ∀ R̃ > R.

We need below also a truncated variant of UR, namely:

UNR [V ](x) = ∇×
[
χ
(
4N1/3|x|/λmin

)( 3R

2|x|
− R3

2|x|3

)
V × x

2

]
,

where χ is a smooth truncation function satisfying 1(−1,1) 6 χ 6 1(−2,2). We remark that
UNR [V ] is divergence-free and satisfies:

UNR [V ] =

{
UR[V ] on B(0, λminN

−1/3/4),

0 outside B(0, λminN
−1/3/2).
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We fix now w ∈ H2(Ω) ∩ D(Ω) and compute the left-hand side of (12) by using the
Stokes system satisfied by u. Indeed, noting that ∇u = 0 on Bi, that div w = 0 on Ω and
integrating by parts, we have:∫

Ω

∇u : ∇w =

∫
Ω\

⋃
Bi

∇u : ∇w

=
N∑
i=1

∫
∂Bi

(∂nu− pn) · wdσ =:
N∑
i=1

Li[w].

Given i ∈ {1, . . . , N}, we introduce now the means w̄i and ũi that are defined in the item
ii) of Lemma 3 and split the integral Li[w] into:

Li[w] =

∫
∂Bi

(∂nu− pn) · UNR [w̄i](· − hi)dσ + err1
i

=

∫
B̃i

∇u : ∇UNR [w̄i](x− hi) + err1
i

=

∫
B̃i

∇u : ∇UR[w̄i](x− hi) + err2
i + err1

i

= 6πRw̄i · (Vi − ũi)− err3
i + err2

i + err1
i .

We point out that the 6πR term comes from the formulas (13)-(14), while the error terms
come from truncation and reduction to the constant values w̄i, ũi. Precisely, we have:

err1
i :=

∫
∂Bi

(∂nu− pn) · (w − w̄i)dσ

err2
i :=

∫
B̃i

∇u : ∇(UNR [w̄i](x− hi)− UR[w̄i](x− hi))

err3
i :=

∫
∂B̃i

(∂nUR[w̄i](x− hi)− PR[w̄i](x− hi)n) · (u− ũi)dσ.

So, we define:

〈err, w〉 =
N∑
i=1

3∑
k=1

errki .

With such a definition, we have that err is indeed a linear form on H2(Ω)∩D(Ω) satisfying
item ii). We only need to show that err is bounded with the bound of item i) to complete
the proof. This is the content of the next computations.

Proof of item i). We control the three error terms:

N∑
i=1

errki

for k = 1, 2, 3, independently.
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In the case k = 1, for a given i ∈ {1, . . . , N}, we construct

ŵi(x) = χ

(
|x− hi|
R

)
(w(x)− w̄i) + bi(x)

where χ is the same truncation function as previously and bi ∈ H1
0 (B(hi, 2R) \B(hi, R)) is

introduced to compensate the divergence of the first term. Via standard scaling argument
and Poincaré-Wirtinger inequality (see the appendix of [14]), we obtain that:

|err1
i | =

∣∣∣∣∫
B(hi,2R)\B(hi,R)

∇u : ∇ŵi
∣∣∣∣ 6 C‖∇u‖L2(B(hi,2R))‖∇w‖L2(B(hi,2R)).

Summing over i and applying standard Hölder and Cauchy-Schwarz inequalities with the
embedding H2(Ω) ⊂ W 1,6(Ω) we conclude that

N∑
i=1

|err1
i | 6 ‖∇u‖L2(Ω)|

N⋃
i=1

B(hi, 2R)|
1
3‖w‖H2(Ω) 6 C(Ω)RN1/3‖∇u‖L2(Ω)‖w‖H2(Ω).

In the case k = 2, we use the decay properties of UR:

|UR[V ](x)|+ |x||∇UR[V ](x)| 6 CR|V |
|x|

∀ |x| > R, ∀V ∈ R3,

that entail:

|∇UNR [V ](x)| 6 CR|V |
|x|2

∀ |x| > R, ∀V ∈ R3.

Consequently, for i = 1, . . . , N, applying that UNR [w̄i]−UR[w̄i] vanishes at a distance lower
than λminN

−1/3/4 from the center, we obtain:

|err2
i | 6 ‖∇u‖L2(B̃i)

(
‖∇UNR [w̄i]‖L2(R3\B(0,λminN−1/3/4)) + ‖∇UR[w̄i]‖L2(R3\B(0,λminN−1/3/4))

)
6 ‖∇u‖L2(B̃i)

(∫ ∞
λminN−1/3/4

|R|2|w̄i|2

r2
dr

) 1
2

6 ‖∇u‖L2(B̃i)
C(λmin)RN1/6|w̄i|.

Consequently with a standard Cauchy-Schwarz inequality and applying the embedding
H2(Ω) ⊂ L∞(Ω) we obtain:

N∑
i=1

|err2
i | 6 C(λmin)‖∇u‖L2(Ω)RN

2/3‖w‖H2(Ω)

For the last case k = 3, we proceed as for the first error term by lifting the boundary
error u− ũi. We introduce an alternative truncation function ζ : R→ [0, 1] such that ζ = 1
on (0,∞) and ζ = 0 on (−∞,−1/2). For fixed i we set then:

ûi = ζ

(
2N

1
3

λmin
|x− hi|∞ − 1

)
(u− ũi)− βi,



FLUID+PARTICLE MODELING 11

where βi ∈ H1
0 (B∞(hi, λminN

−1/3/2) \ B∞(hi, λminN
−1/3/4)) lifts the divergence induced

by the previous truncation. Again via scaling arguments and a Poincaré-Wirtinger type
inequality (see the appendix of [14]) we have:

|err3
i | =

∣∣∣∣∫
B∞(hi,λminN−1/3/2)\B∞(hi,λminN−1/3/4)

∇ûi : (∇UR[w̄i](x− hi)− PR[w̄i](x− hi))
∣∣∣∣

6 C(λmin)‖∇u‖L2(B∞(hi,λminN−1/3/2))...

...‖(∇UR[w̄i](x− hi)− PR[w̄i](x− hi))‖L2(R3\B(hi,λminN−1/3/4)))).

Via similar computations as for the second error term, we obtain again that:

N∑
i=1

|err3
i | 6 C(λmin)RN2/3‖∇u‖L2(Ω).

This concludes the proof. �

3. The Brinkman regime

In this section, we focus on the Brinkman regime in which we choose a radius R 6 r0/N
for some r0 > 0. We do not require any smallness on the parameter r0. But, we assume N
sufficiently large so that condition (H1) ensures (11). This condition does not restrict the
generality a priori since we are interested in representing the discrete set of particles by a
continuous medium which requires a sufficiently large amount of particles. We detail here
the proof of Theorem 1 and its consequences.

3.1. Proof of Theorem 1. So, we want to compare u with the velocity field v of the
solution (v, q) to the Stokes-Brinkman problem (4)-(5) associated with the pair (ρ, j) that
we have set in the introduction. We recall that v ∈ D(Ω) is characterized by the set of
equations:

(15)

∫
Ω

∇v : ∇w + 6π

∫
Ω

ρv · w = 6π

∫
Ω

j · w , ∀w ∈ D(Ω).

Our proof goes into two steps. Firstly, we show a bound for u in H1
0 (Ω) in terms of:

‖V‖`2 :=

(
1

N

N∑
i=1

|Vi|2
) 1

2

.

This is the content of the following lemma:

Lemma 4. There exists a constant C(r0) such that,

‖∇u‖L2(Ω) 6 C(r0)‖V‖`2 .

Proof. We apply the minimization principle satisfied by solutions to the Stokes system:
we have that ‖∇u‖L2(F) is minimal among the vector fields w ∈ D(F) that match the
boundary condition w = Vi on ∂Bi. So, we construct a divergence-free lifting u0 of these
boundary conditions. This can be done by a suitable truncation of the constant vector field
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Vi, by lifting then the divergence of the induced truncation and argue by scaling. However,
for such simple boundary data, we propose to construct explicitly the lifting. Namely,
since we have chosen N sufficiently large so that the no-overlap condition (11) holds true,
we set:

(16) u0(x) =
N∑
i=1

∇×
[
χ

(
|x− hi|
R

)
Vi × (x− xi)

2

]
.

where χ is ever the same smooth truncation function satisfying 1(−1,1) 6 χ 6 1(−2,2).
Due to condition (11), the vector fields in the above sum have pairwise disjoint supports.
Furthermore, they are by construction divergence-free and satisfy:

∇×
[
χ

(
|x− hi|
R

)
Vi × (x− xi)

2

]
= ∇×

[
Vi × (x− xi)

2

]
= Vi on ∂Bi.

We complete the proof by remarking that

‖∇u0‖L2(F) 6 C
√
RN‖V‖`2 .

�

We can now involve the computations of Lemma 3 to use a standard characterization
of the L2(Ω)-norm (inside divergence-free H1

0 (Ω) vector fields):

(17) ‖u− v‖L2(Ω) = sup

{∫
Ω

(u− v) ·$ $ ∈ D(Ω), ‖$‖L2(Ω) = 1

}
.

So, we fix a divergence-free $ ∈ D(Ω) with unit L2-norm and introduce w ∈ D(Ω) the
velocity field of the unique (weak) solution to the Stokes-Brinkman problem:{−∆w + 6πρw +∇q = $

divw = 0
in Ω

with boundary conditions

w = 0 on ∂Ω.

We note that, since ρ ∈ L∞(Ω) and $ ∈ L2(Ω), standard ellipticity arguments entail that
w ∈ H2(Ω) with:

(18) ‖w‖H1
0 (Ω) + ‖w‖H2(Ω) 6 C(Ω)(‖ρ‖L∞(Ω) + 1).

We have then by integration by parts:∫
Ω

(u− v) ·$ =

∫
Ω

(u− v) · (−∆w + 6πρw +∇q)

=

∫
Ω

∇(u− v) : ∇w +

∫
Ω

6πρw · (u− v).
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In the right-hand side, we extract the v term and apply (15). As for the u term, we apply
Lemma 3 and, keeping notations, we rewrite:∫

Ω

∇u : ∇w +

∫
Ω

6πρw · u = 6πR
N∑
i=1

w̄i · (Vi − ũi) + 〈err, w〉+

∫
Ω

6πρw · u.

Regrouping both computations, we obtain finally that:∫
Ω

(u− v) ·$ = 6π(〈Th, w〉 − 〈Tf , w〉) + 〈err, w〉,

where

〈Tf , w〉 =

∫
Ω

j · w −
N∑
i=1

RVi · w̄i , and 〈Th, w〉 =

∫
Ω

ρu · w −
N∑
i=1

Rũi · w̄i.

Combining Lemma 3 with Lemma 4 and (18), we have that:

|〈err, w〉| 6 C(Ω, λmin, r0)

N1/3
(‖ρ‖L∞(Ω) + 1)‖V‖`2 .

So, we conclude the proof of Theorem 1 by showing the following lemma:

Lemma 5. There exists a constant C(Ω, λmin, r0) such that:

|〈Tf , w〉| 6 C(Ω, λmin, r0)(‖ρ‖L∞(Ω) + 1)

(
‖j − jd‖(H2(Ω)∩H1

0 (Ω))∗ +
‖V‖`2
N1/6

)
,

|〈Th, w〉| 6 C(Ω, λmin, r0)(‖ρ‖L∞(Ω) + 1)

(
‖ρ− ρd‖H−1(Ω)‖V‖`2 +

‖V‖`2
N1/6

)
,

where we recall that:

(19) ρd = R
N∑
i=1

1

|B̃i|
1B̃i

jd = R

N∑
i=1

1

|B̃i|
1B̃i

Vi.

Proof. For the first term, we first remark that w ∈ H2(Ω) ⊂ C0,1/2(Ω̄). This entails that,
for any i ∈ {1, . . . , N}∣∣∣∣ 1

|Bi|

∫
Bi

w(x)− 1

|B̃i|

∫
B̃i

w(x)

∣∣∣∣ 6 C(λmin)‖w‖H2(Ω)

N1/6
.

Introducing (18) and the definition (19) of jd, we derive then:∣∣∣∣∣
N∑
i=1

RVi · w̄i −
∫

Ω

jd(x) · w(x)

∣∣∣∣∣ 6 C(Ω, λmin, r0)

N1/6
‖V‖`2

(
‖ρ‖L∞(Ω) + 1

)
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This entails:

|〈Tf , w〉| 6 |〈j − jd, w〉|+
C(Ω, λmin, r0)

N1/6
‖V‖`2

(
‖ρ‖L∞(Ω) + 1

)
6 ‖j − jd‖(H2(Ω)∩H1

0 (Ω))∗‖w‖H2(Ω) +
C(Ω, λmin, r0)

N1/6
‖V‖`2

(
‖ρ‖L∞(Ω) + 1

)
6 C(Ω, λmin, r0)(‖ρ‖L∞(Ω) + 1)

(
‖j − jd‖(H2(Ω)∩H1

0 (Ω))∗ +
‖V‖`2
N1/6

)
.

As for the other term, we first rephrase:

N∑
i=1

Rũi · w̄i = R

N∑
i=1

1

|B̃i|

∫
B̃i

u · w̄i

=

∫
Ω

ρd(x)u(x) · w(x) +R
N∑
i=1

1

|B̃i|

∫
B̃i

u(x) · (w(x)− w̄i).

Here we apply that w ∈ H2(Ω) ⊂ C0,1/2(Ω̄) which entails that:

|w − w̄i| 6 (diam(B̃i))
1
2‖w‖H2(Ω) on B̃i.

Consequently, applying again the embedding H1
0 (Ω) ⊂ L6(Ω) and the bound (18) we get:∣∣∣∣∣R

N∑
i=1

1

|B̃i|

∫
B̃i

u · (w − w̄i)

∣∣∣∣∣ 6
N∑
i=1

r0

N |B̃i|
1
6

‖u‖L6(B̃i)
max
i

sup
B̃i

|w − w̄i|

6
C(Ω, λmin, r0)

N1/6
(‖ρ‖L∞(Ω) + 1)‖∇u‖L2(Ω).

Splitting ρ = ρ− ρd + ρd as we did for the momentum, we obtain finally:

|〈Th, w〉| 6 C(Ω, λmin, r0)(‖ρ‖L∞(Ω) + 1)

(
‖ρ− ρd‖H−1(Ω)‖V‖`2 +

‖V‖`2
N1/6

)
.

�

3.2. Comments. The previous computations naturally applies to tackling the issue N →
∞ in the system (1)-(2). Precisely, assume we choose now as parameter the number N
of particles in Ω and consider a sequence of configurations (h(N), R(N)) where h(N) ∈ C
contains N centers and R(N) 6 r0/N uniformly for some constant r0 > 0. We also consider
a sequence V(N) of boundary data. To this sequence of boundary data, we associate the
discrete momentums and densities:

ρ
(N)
d := R(N)

N∑
i=1

1

|B̃(N)
i |

1
B̃

(N)
i
, j

(N)
d := R(N)

N∑
i=1

1

|B̃(N)
i |

1
B̃

(N)
i
V

(N)
i ,

with obvious notations. Assume further that

(H2) there exists a constant M such that ‖V(N)‖`2 6M for all N.
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With (H2), we note that ρ
(N)
d is bounded in L∞(Ω) and j

(N)
d is bounded in L2(Ω) and

that both have support in K. We can then assume that they converge respectively to
some ρ ∈ L∞(Ω) (in H−1(Ω)) and j ∈ L2(Ω) (in [H1

0 (Ω) ∩ H2(Ω)]∗). We denote (v, q)
the associated solution to the Stokes-Brinkman problem (4)-(5). We have also at-hand a
solution (u(N), p(N)). Then Theorem 1 entails that, then u(N) → v in L2(Ω). Note that we
always consider that u(N) is extended by its boundary values on the particles. Actually,
the minimization property of Stokes-solution ensures that u(N) is bounded in H1

0 (Ω) so
that the convergence holds also in H1

0 (Ω)− w.

4. The Darcy regime.

We proceed with the Darcy regime. We mean here that we consider a choice of radius
for which there exists r0 > 0 such that:

(20)
r0

N
6 R 6

λmin
4N1/3

.

We recall that λmin is associated with assumption (H1). We recall also that, in this case,
we introduce a target fluid flow v ∈ L2(Ω) and the following functional description of the
discrete set of particles and velocities Vi:

ṽd =
N∑
i=1

1B̃i
Vi , ρ̃d =

N∑
i=1

1B̃i
,

where B̃i = B∞(hi, λminN
−1/3/2).

4.1. Proof of Theorem 2. The proof of Theorem 2 splits into two parts. First, we
show that the ”good unknown” in this regime is the velocity

ũ(x) =
√
ρ̃du.

Indeed, we have the following lemma:

Lemma 6. There exists a constant C(λmin) such that:

‖∇u‖L2(Ω) 6 C(λmin)
√
RN‖V‖`2 ,

‖ũ‖L2(Ω) 6 C(λmin)‖V‖`2 .

Proof. We prove this lemma by adapting Lemma 4 and [2, Lemma 3.4.1]. Indeed, we
remark first that we can construct the same u0 as in Lemma 4 which satisfies again
u0 ∈ D(Ω) with u0 = Vi on Bi, and

‖u0‖L2(Ω) 6 C(λmin)‖V‖`2 , ‖∇u0‖L2(Ω) 6 C(λmin)
√
RN‖V‖`2 .

Consequently, via ever the same minimization principle, we use the second bound to yield
that:

‖∇u‖L2(Ω) 6 C(λmin)
√
RN‖V‖`2 .
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We can then consider w = u−u0 ∈ D(Ω). Since w = 0 on Bi we can use a straightforward
extension of [2, Lemma 3.4.1] to the case of spheres for the `∞-norm to yield that:

‖w‖2
L2(

⋃
B̃i)
6

C

RN
‖∇w‖2

L2(Ω) ∀ i = 1, . . . , N.

Combining this inequality with the previous bounds on u0 and u we infer that:

‖w‖2
L2(

⋃
B̃i)
6

C

RN

(
‖∇u0‖2

L2(Ω) + ‖∇u‖2
L2(Ω)

)
,

6 C‖V‖2
`2

Finally, we have:

‖ũ‖2
L2(Ω) = ‖u‖2

L2(
⋃
B̃i)
6 C

(
‖u0‖2

L2(Ω) + ‖w‖2
L2(

⋃
B̃i)

)
.

and we conclude by combining the previous bounds for w and u0. �

We point out that the previous lemma only gives a O(1)−bound for w = u− u0. But at
this point we have not been able to construct an extension of the distribution of velocities
Vi to which we can compare u (for large N for instance). This is a novelty in comparison
with the homogeneous case considered in [2].

The main effort of the proof is now a novel interpretation of the identity (12) in
Lemma 3. Namely, we remark that Lemma 3 holds true in this new context since con-
vention (20) implies condition (11). So, we fix w ∈ H3(Ω) ∩D(Ω) and apply Lemma 3.
We obtain:

6πR
N∑
i=1

w̄i (Vi − ũi) =

∫
Ω

∇u : ∇w − 〈err, w〉.

With the explicit values for w̄i and ũi and with the controls of item i) for err and of
Lemma 6 for ‖∇u‖L2(Ω) we derive:

(21)

∣∣∣∣∣6πR
N∑
i=1

1

|Bi|

∫
Bi

Vi · w(x)− 6πR
N∑
i=1

1

|Bi|

∫
Bi

w(x) · 1

|B̃i|

∫
B̃i

u(x)

∣∣∣∣∣
6 C(Ω, λmin)

(
RN2/3 + 1

)√
RN‖V‖`2‖w‖H2(Ω).

Here we rewrite the left-hand side using that w ∈ H3(Ω) ⊂ C0,1(Ω̄). This entails that,
for any i ∈ {1, . . . , N}∣∣∣∣ 1

|Bi|

∫
Bi

w(x)− 1

|B̃i|

∫
B̃i

w(x)

∣∣∣∣ 6 C(λmin)‖w‖H3(Ω)

N1/3
.
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Consequently, noting that |B̃i| = λ3
min/8N for all i, we can transform the first term in the

left-hand side of (21) since we obtain

(22)

∣∣∣∣∣6πR
N∑
i=1

1

|Bi|

∫
Bi

Vi · w(x)− 48πRN

λ3
min

∫
Ω

ṽd(x) · w(x)

∣∣∣∣∣
6 C(λmin)RN2/3‖w‖H3(Ω)‖V‖`2 .

In our setting
√
RN is large. So, the new induced error term on the right-hand side of this

latter inequality is smaller than:

C(λmin, r0)RN2/3
√
RN‖w‖H3(Ω)‖V‖`2 ,

corresponding to a similar right-hand side as for (21) in terms of powers of N. As for the
other term of the left-hand side of (21), we use again that H3(Ω) ⊂ C0,1(Ω̄) to yield that,
for any i ∈ {1, . . . , N}, there holds:∣∣∣∣ 1

|Bi|

∫
Bi

w(x) ·
∫
B̃i

u(x)−
∫
B̃i

w(x) · u(x)

∣∣∣∣ 6 1

N1/3

(∫
B̃i

|ũ(x)|
)
‖w‖H3(Ω).

Summing over i enables to transform the second term in the left-hand side of (21) since,
combining the previous computation with the bound of Lemma 6 for ‖ũ‖L2(Ω), we obtain:

(23)

∣∣∣∣∣6πR
N∑
i=1

1

|Bi|

∫
Bi

w(x) · 1

|B̃i|

∫
B̃i

u(x)− 48πRN

λ3
min

∫
Ω

w(x) · ũ(x)

∣∣∣∣∣
6 C(λmin)

RN

N1/3
‖V‖`2‖w‖H2(Ω).

Eventually, combining (21) with (22)-(23), we obtain:∣∣∣∣∫
Ω

ṽd(x) · w(x)−
∫

Ω

w(x) · ũ(x)

∣∣∣∣ 6 C(Ω, λmin, r0)

(√
RN

N1/3
+

1√
RN

)
‖V‖`2‖w‖H3(Ω).

This concludes the proof.

4.2. Comments. As in the Brinkman regime, the results we propose above enable to
tackle the issue N →∞ in the problem (1)-(2). Precisely, assume again that we choose as
parameter the number N of holes in Ω and consider a sequence of configuration (h(N), R(N))
where h(N) ∈ C contains N centers and R(N) = rsc/N

α for some constant rsc > 0 and
exponent α > 0. We also consider a sequence V(N) of boundary data. To this sequence of
boundary data we associate the discrete momentums and densities:

ρ̃
(N)
d :=

N∑
i=1

1
B̃

(N)
i
, ṽ

(N)
d :=

N∑
i=1

1
B̃

(N)
i
V

(N)
i .

with obvious notations. Assume further that

(A1) rsc is arbitrary and α ∈ (1/3, 1)
(A2) there exists a constant M such that ‖V(N)‖`2 6M for all N.
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With (A2), we note that ṽ
(N)
d is bounded in L2(Ω) and that both ṽ

(N)
d and ρ̃

(N)
d have support

in K. We can then assume that ṽ
(N)
d converges to some v ∈ L2(Ω) in [H3(Ω) ∩ D(Ω)]∗.

Furthermore, we have also at-hand the solution (u(N), p(N)) to (1)-(2) and

ũ(N) =

√
ρ̃

(N)
d u(N).

Then, Lemma 6 entails that, ũ(N) is bounded in L2(Ω) and Theorem 2 ensures that
it converges (in L2(Ω) − w) to v up to the addition of a gradient (since the convergence
holds in the dual of D(Ω)). We recall that, if the Bi are distributed periodically and well-

centered in a cube K, we have

√
ρ̃

(N)
d = 1K whatever the value of N up to choosing the

optimal value for λmin. In this case ũ(N) is the restriction to K of u(N).
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